"Физика и техника полупроводников"
Вышедшие номера
Velocity-direction dependent transmission coefficient of electron through potential barrier grown on anisotropic semiconductor
Chen Chun-Nan1, Chang Sheng-Hsiung2, Su Wei-Long3, Jen Jen-Yi1, Li Yiming4
1Quantum Engineering Laboratory, Department of Physics, Tamkang University, Tamsui, Taipei 251, Taiwan
2Department of Optoelectronic Engineering, Far-East University, Hsin-Shih Town, Tainan, Taiwan
3Department of Digital Mulitimedia Technology, Lee-Ming Institute of Technology, Tai-Shan, Taipei, Taiwan
4Department of Electrical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
Поступила в редакцию: 14 ноября 2011 г.
Выставление онлайн: 20 августа 2012 г.

In contrast to the usual wavevector dependent transition coefficients, the velocity-direction dependent transition coefficients of an incident electron are calculated. Through a potential barrier grown on anisotropic semiconductors, the transition coefficients of an incident electron are calculated in all valleys and incident-directions. In the anisotropic semiconductor, the mathematical expressions of the electron wavevector are also derived in the framework of the incident-angle and incident-energy parameters.
  1. N. Arora. MOSFET Modeling for VLSI Simulation: Theory and Practice (Workd Scientific Publishing, Singapore, 2007)
  2. A.B. Bhattacharyya. Compact MOSFET Modeling for VLSI Design (John Wiley\&Sons, Singapore, 2009)
  3. A. Rahman, J. Guo, S. Datta, M. Lundstrom. IEEE Trans. Electron. Dev., 50, 1853 (2003)
  4. J.H. Rhew and M.S. Lundstrom. J. Appl. Phys., 92, 5196 (2002)
  5. J. Wang and M. Lundstrom. IEEE Trans. Electron. Dev., 50, 1604 (2003)
  6. E.O. Kane. In: Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer (Academic Press, N. Y., 1966) v. 1, p. 75
  7. J. Luttinger, W. Kohn. Phys. Rev., 97, 869 (1955)
  8. J. Luttinger. Phys. Rev., 102, 1030 (1955)
  9. C.N. Chen. Phys. Rev. B, 72, 085 305 (2005)
  10. S. Datta. Superlatt. Microstr., 28, 253 (2000)
  11. Z. Ren, R. Venugopal, S. Goasguen, S. Datta, M.S. Lundstrom. IEEE Trans. Electron. Dev., 50, 1914 (2003)
  12. C.N. Chen, W.L. Su, M.E. Lee, J.Y. Jen, Yiming Li. Jpn. J. Appl. Phys., pt 2, 50, 060 201 (2011)
  13. K.Y. Kim, B. Lee. Phys. Rev. B, 58, 6728 (1998)
  14. K.Y. Kim, B. Lee, Superlatt. Microstr., 24, 389 (1998)
  15. R.A. Abram, M. Jaros. Band Structure Engineering in Semiconductor Microstucture (Plenum Press, N. Y., 1989)
  16. R.H. Henderson, E. Towe. J. Appl. Phys., 79, 2029 (1996)
  17. Y. Kajikawa. J. Appl. Phys., 86, 5663 (1999)
  18. J.H. Park, D. Kuzum, H.Y. Yu, K.C. Saraswat. IEEE Trans. Electron. Dev., 58, 2394 (2011)
  19. J. Zhuge, A.S. Verhulst, W.G. Vandeberghe, W. Dehaene, R. Huang, Y. Wang, G. Groeseneken. Semicond. Sci. Technol., 26, 085 001 (2011)
  20. J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, W. Riess. IEEE Trans. Electron. Dev., 55, 2827 (2008)
  21. J. Guo, M.S. Lundstrom. IEEE Trans. Electron. Dev., 49, 1897 (2002)
  22. Q.T. Zhao, J.M. Hartmann, S. Mantl. IEEE Electron. Dev. Lett., 32, 1480 (2011)
  23. C.H. Shih, N.D. Chien. IEEE Electron. Dev. Lett., 32, 1498 (2011)
  24. K. Yamamoto, R. Ueno, T. Yamanaka, K. Hirayama, H. Yang, D. Wang, H. Nakashima. Appl. Phys. Express, 4, 051 301 (2011)
  25. N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, S. Takagi. J. Appl. Phys., 108, 104 511 (2010)
  26. C.N. Chen. J. Appl. Phys., 97, 113 704 (2005)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.