
Физика и техника полупроводников, 2012, том 46, вып. 9

Velocity-direction dependent transmission coefficient of electron through

potential barrier grown on anisotropic semiconductor

© Chun-Nan Chen ∗¶, Sheng-Hsiung Chang +, Wei-Long Su ◦, Jen-Yi Jen ∗, Yiming Li �

∗ Quantum Engineering Laboratory, Department of Physics, Tamkang University,

Tamsui, Taipei 251, Taiwan
+ Department of Optoelectronic Engineering, Far-East University,

Hsin-Shih Town, Tainan, Taiwan
◦ Department of Digital Mulitimedia Technology, Lee-Ming Institute of Technology,

Tai-Shan, Taipei 24305, Taiwan
� Department of Electrical Engineering, National Chiao Tung University,

Hsinchu 300, Taiwan

(Получена 14 ноября 2011 г. Принята к печати 6 марта 2012 г.)

In contrast to the usual wavevector dependent transition coefficients, the velocity-direction dependent transition

coefficients of an incident electron are calculated. Through a potential barrier grown on anisotropic semiconductors,

the transition coefficients of an incident electron are calculated in all valleys and incident-directions. In the

anisotropic semiconductor, the mathematical expressions of the electron wavevector are also derived in the

framework of the incident-angle and incident-energy parameters.

1. Introduction

Metal-oxide-semiconductor field-effect transistors

(MOSFETs) constitute the fundamental building block of

the present day complementary metal-oxide semiconductor

technology. Current research in this field is largely geared

towards improving MOSFET performance and increasing

device density through aggressive scaling of their feature

sizes [1,2]. As MOSFET channel lengths approach few tens

of nanometers, source-to-drain potential-barrier tunneling in

these near-ballistic devices become important issues [3–5].

The effective-mass equation provides an accurate and

easy to implement model Hamiltonian that does justice

to the device band structure including quantum-mechanical

size effects, and it describes the slowly varying enve-

lope part of the underlying Bloch wave function [6–9].
The non-equilibrium Green’s-function method provides a

rigorous formulation of quantum transport in nano-scale

devices [10–12]. Together in this study, the Green’s-function

formalism and effective-mass equation are used to describe

transport in nano-scale potential-barrier tunneling both in

the ballistic limit.

The popular problem in nano-scale transistors is the

quantum transport through the source-to-drain potential

barrier [3–5]. The aim of this study is: for an incident

electron through a potential barrier grown on an anisotropic

material, the velocity-direction dependent transition coeffi-

cients are seldom calculated in the previous articles which

are in contrast to the usual wavevector dependent transition

coefficient that will be formulated and calculated in this

study [13,14]. If the transmission coefficients as a function

of the incident-electron angle are known, we can use these

results as the design principle of geometry shape of device

body and Ohm’s contact to improve MOSFET performance.

¶ E-mail: quantum@mail.tku.edu.tw

Band-structure engineering in semiconductor devices is

an essential activity when developing high-performance

electronic devices [15]. The crystallographic orientation

represents another crucial degree of freedom in the design

of electronic devices. The advances in growth technologies

now enable the growth of high-quality epitaxial layers

on both (001)-oriented and non-(001)-oriented substrates.

As alternatives to the conventional (001) orientation, the

most widely used substrate orientations belong to the

(11N)-oriented family, e. g., (111) and (110) [16,17].

Silicon wafers are almost universally used by the semi-

conductor industry for MOS integrated circuit fabrication.

Germanium is an attractive candidate for ultra fast MOS

technology due to its potential for doubling electron

mobility and quadrupling hole mobility in comparison to

silicon [18,19]. The proposed method in this study is

suitable for the velocity-direction dependent transmission-

coefficient calculation of the traditional and modern Si- or

Ge-based transistors in the ballistic limit [20–25].

The study formulates the components of the wavevector

on an anisotropic material as a function of incident-

electron angle, and then the angle-dependent transmission

coefficients of (001)-, (111)-, and (110)-oriented potential-

barriers of Si and Ge samples are calculated.

2. Theoretical method

In this study, we will discuss the transmission coefficient

T (E, θ, φ) of electron through a potential barrier grown

on an anisotropic material (ellipsoidal valley) under non-

normal incident. Furthermore, the transmission coefficient

T (E, θ, φ) is dependent on the energy (E) and angle (θ, φ)
of the incident electron, and the angles θ and φ are the

polar and azimuthal angles of the velocity direction of the

incident electron relative to the structure coordinate system

(x ′, y ′, z ′), respectively. Note that k (wavevector of the
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incident electron) and v (velocity of the incident electron)
are not necessarily parallel in an anisotropic material.

The (θ, φ) and (θ′, φ′) are the angles coordinate compo-

nents of v and k which relatives to the system coordinate

(x ′, y ′, z ′), respectively, and they can be defined as follows

θ = tan−1
({

v2
x ′ + v2

y ′

}1/2/∣

∣vz ′

∣

∣

)

, (1a)

φ = tan−1
(

vy ′

/

vx ′

)

, (1b)

k = kx ′ x̂ ′ + ky ′ ŷ ′ + kz ′ ẑ ′ = k sin θ′ cosφ′x̂ ′

+ k sin θ′ sinφ′ŷ ′ + k cos θ′ ẑ ′. (2)

Let the electron potential, V (z ), be a function of the

growth-direction distance, z , then the Hamiltonian for the

general ellipsoidal-valley can be expressed as [13,14]

H0 =
~
2

2

∑

i, j=x ,y,z

k iαi j k j + V (z )

=
~
2

2

∑

i, j=x ,y

k iβi j k j +
~
2

2
αz z k ′2 + V (z ), (3)

where k‖ = (kx , ky) and kz denote the in-plane and growth-

direction wave-vector relative to coordinate system (x , y, z ),
βi j = αi j − αizα jz /αz z (i, j = x , y), and αi j is the 3× 3

reciprocal effective mass tensor by the in-plane rotation of

azimuthal angle (φ − π/2), which can be obtained by







αxx αxy αxz

αyx αyy αyz

αz x αz y αz z






= O

T
3







Wx ′x ′ Wx ′y ′ Wx ′z ′

Wy ′x ′ Wy ′y ′ Wy ′z ′

Wz ′x ′ Wz ′y ′ Wz ′z ′






O3 (4)

with Wi j (with i, j = x ′, y ′, z ′), as shown in Appendix A,

and

O3 =







cos(φ − π/2) − sin(φ − π/2) 0

sin(φ − π/2) cos(φ − π/2) 0

0 0 1






.

Note that the coordinate system (x , y, z ) can be obtained

by the in-plane rotation of azimuthal angle (φ − π/2) on

the coordinate system (x ′, y ′, z ′) with ẑ = ẑ ′. Furthermore,

it is noted that the above expressions are instructive in

that kz is separated into two parts, namely (−γ) and (k ′),
(i. e., kz = k ′

− γ with γ = (αxz kx + αyz ky)/αz z ) [13,14].
In addition, the time-independent Schödinger equation,

H09 = E9, with constant potential, V (z ), has an eigen-

function of

9=[A+ exp(+ikz z )+A− exp(−ikz z )] exp(ikx x) exp(iky y),
(5a)

or

9 = [A+ exp(+ik ′z )

+ A− exp(−ik ′z )] exp(−iγz ) exp(ikx x) exp(iky y), (5b)

where A+ and A− are the amplitudes of the propagation

in the positive and negative directions along the z -axis,
respectively. Therefore, we can obtain

−

~
2

2
αz z

d2ζ (z )

dz 2
+ λ(z )ζ (z ) = Eζ (z ) (6)

with

λ(z ) =
~
2

2

∑

i, j=x ,y

βi jk i k j + V (z )

and

ζ (z ) = A+ exp(+ik ′z ) + A− exp(−ik ′z ).

Next, the Schrödinger equation for a potential profile with

an arbitrary shape can be solved by using our previous cal-

culating frameworks (the non-equilibrium Green’s function

or transfer-matrix methods) [12,26].
The velocity in each direction of an incident electron can

be defined as

v i =
1

~

∂E
∂k i

i = x , y, z , (7)

which can be written as follows

vx = ~(βxx kx + βxy ky + αxz k ′), (8a)

vy = ~(βyx kx + βyy ky + αyz k ′), (8b)

vz = ~(αz z k ′), (8c)






vx ′

vy ′

vz ′






= O3







vx

vy

vz






. (9)

So, we can express the components of the wavevector as

(by setting vx = 0)

k ′ =

{(

2

~2

)

E −V (z )

f 2βxx + 2e f βxy + e2βyy + αz z

}1/2

, (10)

e =
βxx(αz z tan θ − αyz ) + αxzβyx

βxxβyy − βxyβyx
, (11a)

f =
βxy(αyz − αz z tan θ) − αxzβyy

βxxβyy − βxyβyx
, (11b)

kx = f k ′, (12a)

ky = ek ′, (12b)

kz = k ′
− γ, (12c)







kx ′

ky ′

kz ′






= O3







kx

ky

kz






. (13)

Furthermore, the angle (θ′, φ′) of the wavevector k can be

expressed as

θ′ = cos−1
(

kz ′

/
√

k2
x ′ + k2

y ′ + k2
z ′

)

, (14a)

φ′ = tan−1(ky ′/kx ′). (14b)
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Figure 1. Calculated transmission coefficients T in (001)-oriented Si rectangular potential barrier generated by incident electrons derived

from (a) [100]-, (b) [010]-, and (c) [001]-valleys with different incident angles (θ = 0−90◦ and φ = 0−360◦).

3. Results and discussion

In the indirect-gap semiconductors, the conduction elec-

trons occupy valleys with ellipsoidal constant-energy sur-

faces (ellipsoids). For the layer of a device structure grown

on an anisotropic material (ellipsoidal valleys), there are

non-zero off-diagonal elements in the effective-mass tensor

when one or more of principal axes of the ellipsoids is

tilted with respect to growth direction, as proven in the

Appendix A.

The energy coupling effects of the longitudinal motion

to the transverse motion exists in anisotropic materials

via the off-diagonal effective-mass tensor elements. And,

the off-diagonal effective-mass tensor elements are valley

dependent, which suggests that the coupling effects are

not identical in all valleys. The coupling strength between

the transverse and longitudinal motions varies with the in-

plane angle and growth-direction because of the diffrent

off-diagonal effective-mass tensor elements; and it implies

the loss or gain of kinetic energy for longitudinal direction,

helping or hindering the tunneling on a potential barrier.

Thus, it is necessary to investigate its effect on the tunneling

quite rigorously.

From Eqs (10)–(13), we can obtain the components of

the wavevector (k i , i = x ′, y ′, z ′) in an anisotropic material

when the energy (E) and velocity angle (θ, φ) of the

incident electron are known. Moreover, we can also obtain

the relation between the k direction (θ′, φ′) and v direction

(θ, φ) in an anisotropic material through the simulation and

calculation of Eqs (10)–(14). Owing to the existing of the

non-zero off-diagonal elements in the effective-mass tensor,

it should be noted that k and v are not necessarily parallel

in an anisotropic material, as shown in Eq. (8).
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Figure 2. Calculated transmission coefficients T in (111)-oriented Si rectangular potential barrier generated by incident electrons derived

from (a) [100]-, (b) [010]-, and (c) [001]-valleys with different incident angles (θ = 0−90◦ and φ = 0−360◦).

We previously had derived the non-equilibrium Green’s

function method for a quantum-transport calculation on

anisotropic materials and successfully calculated the trans-

mission coefficient of an electron through a potential bar-

rier [12]. In this study, as an extension to this, we calculate

the velocity-direction dependent transition coefficient of an

incident electron through a potential barrier grown on an

anisotropic material.

In this study, a rectangular potential barrier with barrier

thickness d = 30 nm and barrier height V0 = 200meV is

considered as an example for (001)-, (111)-, and (110)-ori-
entations. It should be noted that the rectangular barrier

approximates to a source-to-drain Si or Ge potential barrier

of MOSFETs.

In X-valey material (Si), the 6 equivalent minima of the

conduction band are located at the X points of the Brillouin

zone. For Si (001), x̂ ′, ŷ ′, and ẑ ′ are chosen along the [100],

[010], and [001] directions, respectively. For a Si (001)
surface there are 2 systems: a system which is two-fold

degenerate valleys (X2), [001]- and [001̄]-valleys, with their

small effective mass in the z ′-direction, and a system which

is four-fold degenerate valleys (X4). Owing to the X2

valleys with smaller effective mass in the z ′-direction, the

transmission coefficients of the X2 valleys are larger than

those of the X4 valleys under norma-incident (θ = 0◦), as
shown in Fig. 1. Furthermore, the transmission coefficients

of the X2 valleys are in-plane angle (φ) independent, and

also for the X4 valleys.

For Si (111), x̂ ′, ŷ ′, and ẑ ′ are defined along the

[112̄], [1̄10], and [111] directions, respectively. For the

Si (111) growth direction, the X valleys do not split due

to the symmetry of X valleys with respect to the structure

coordinate system (x ′, y ′, z ′). For a Si (111) surface,

however, the effective mass along the z ′-direction is equal
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Figure 3. Calculated transmission coefficients T in (110)-oriented Si rectangular potential barrier generated by incident electrons derived

from (a) [100]-, (b) [010]-, and (c) [001]-valleys with different incident angles (θ = 0−90◦ and φ = 0−360◦).

for all six valleys. In that case only one six-fold degenerate

system exists. The 6 conduction bands are equivalent on

the Si (111) surface. Therefore, the transmission coefficients

of six equivalent valleys are the same, but the in-plane phase

difference of these valleys is φ = 120◦ , as shown in Fig. 2

For Si (110), x̂ ′, ŷ ′, and ẑ ′ are chosen along the [001̄],
[1̄10], and [110] directions, respectively. For the Si (110)
growth direction, the six X valleys are split into dou-

blet [001] and [001̄] valleys (X2) and other four-fold de-

generate valleys (X4). The X4 effective mass of Si (110) is

different from that of X4 ellipsoids in Si (001). For Si (110)
with 6 energy ellipsoids, 4 of them (X4) are tilted toward

the growth direction, [110], resulting in the non-vanishing

off-diagonal elements in the effective-mass tensor. The

effective-mass anisotropy of electrons in these valleys can

provide coupling between the parallel and perpendicular

motions of the electrons. As shown in Figs 3, a and 3, b,

the transmission coefficients of X4 valleys are the same, but

the in-plane phase difference of these valleys are φ = 180◦ .

Fig. 3, c exhibits that the largest transmission coefficients

in Si (110) are located in the X2 valleys near θ = 0.

The indirect conduction valleys of Ge are located at the

conduction band minimum at L point. Ge (001) has four (or
half of eight) energy ellipsoids at L points and the ellipsoids

are titled toward the growth direction, [001]. Especially,

the transmission coefficients of the L valleys are in-plane

angle (φ) independent, as shown in Fig. 4. Fig. 4, b exhibits

that the largest transmission coefficients in Ge (001) are

located at the [11̄1]- and [111̄]-valleys near θ = 40◦ .

For the growth on (111) substrates, the L valleys split

into a singlet [111] valley and triplet degenerate valleys

along the [1̄11], [11̄1], and [111̄] directions, whose energy
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Figure 4. Calculated transmission coefficients T in (001)-oriented Ge rectangular potential barrier generated by incident electrons derived

from (a) [111]- and [1̄11]-valleys and (b) [11̄1]- and [111̄]-valleys with different incident angles (θ = 0−90◦ and φ = 0−360◦).

Figure 5. Calculated transmission coefficients T in (111)-oriented Ge rectangular potential barrier generated by incident electrons derived

from (a) [111]-, (b) [1̄11]-, (c) [11̄1], and (d) [111̄]-valleys with different incident angles (θ = 0−90◦ and φ = 0−360◦).
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Figure 6. Calculated transmission coefficients T in (110)-oriented Ge rectangular potential barrier generated by incident electrons derived

from (a) [111]-, (b) [1̄11]-, (c) [11̄1], and (d) [111̄]-valleys with different incident angles (θ = 0−90◦ and φ = 0−360◦).

ellipsoids of the triplet valleys are tilted with respect to

the growth direction, resulting in the non-vanishing off-

diagonal elements in the effective-mass tensor. Fig. 5, a

shows that the largest transmission coefficients in Ge (111)
are located at the singlet [111]-valley near θ = 0. As shown

in Figs 5, b, 5, c and 5, d the transmission coefficients of

triplet degenerate valleys are the same, but the in-plane

phase difference of these valleys is φ = 120◦ .

For Ge (110), the four L conduction band valleys

are symmetrically equivalent. However, the effective-mass

tensor elements of these four valleys are not the same. As

shown in Figs 6, a and 6, d, the transmission coefficients

of [111]- and [111̄]-valleys are the same, but the in-plane

phase difference of the two valleys is φ = 180◦ . As shown

in Figs 6, b and 6, c, the transmission coefficients of [1̄11]-
and [11̄1]-valleys are the same, but the in-plane phase

difference of the two valleys is near φ = 90◦. Furthermore,

Figs 6, b and 6, c show that the largest transmission

coefficient in Ge (110) are located at the [1̄11]- and [11̄1]-
valleys near θ = 0◦.

4. Conclusions

In anisotropic semiconductors, the mathematical equa-

tions of the electron wavevector have been derived and

expressed as a function of the velocity-angle and ener-

gy of incident electron. Through a potential barrier

grown on (001)-, (111)-, and (110)-oriented anisotropic

semiconductors, the velocity-direction dependent transition

coefficients of an incident electron have been calculated in

all valleys and incident-directions. The results have showed

that the transition coefficients are strongly incident-direction
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and valley dependent. The results are suitable for the

design guideline of device and contact geometric-shape in

the ballistic devices.

This work was supported in part by National Science

Council (NSC), Taiwan under Contract NSC-99-2112-M-

032-006 and NSC-97-2221-E-009-154-MY2.

Appendix A

In general situation, the growth direction ẑ ′ of a sample

is along the [hkl] direction, while the major axis of an

ellipsoidal valley is along the [mnp] direction. In the above

depiction, the 3× 3 reciprocal effective mass tensor Wi j

(with i, j = x ′, y ′, z ′) is given by [9,26].







Wx ′x ′ Wx ′y ′ Wx ′z ′

Wy ′x ′ Wy ′y ′ Wy ′z ′

Wz ′x ′ Wz ′y ′ Wz ′z ′






= O

T
1O2







w t 0 0

0 w t 0

0 0 w l,






O

T
2O1,

(A.1)
where w t = 1/mt , w l = 1/ml , mt and ml are the transverse

and longitudinal effective masse, of ellipsoidal valley, respec-

tively, T denotes the transpose of the matrices, and O1(2) are

the rotational matrices, which are given by

Oζ =









cos�ζ cosωζ − sinωζ sin�ζ cosωζ

cos�ζ sinωζ cosωζ sin�ζ sinωζ

− sin�ζ 0 cos�ζ ,









(ζ = 1 or 2), (A.2)

with

�1 = tan−1
(

√

h2 + k2

/

l
)

, (A.3)

ω1 = tan−1(k/h), (A.4)

�2 = tan−1
(

√

m2 + n2

/

p
)

, (A.5)

ω2 = tan−1(n/m). (A.6)
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