Вышедшие номера
Grain boundary related electrical transport in Al-rich AlxGa1-xN layers grown by metal-organic chemical vapor deposition
Yildiz A.1,2, Tasli P.3, Sarikavak B.3, Lisesivdin S.B.3, Ozturk M.K.3, Kasap M.3, Ozcelik S.3, Ozbay E.4,5
1Department of Engineering Physics, Faculty of Engineering, Ankara University, Besevler, Ankara, Turkey
2Department of Physics, Faculty of Science and Arts, Ahi Evran University, Kirsehir, Turkey
3Department of Physics, Faculty of Science and Arts, Gazi University, Teknikokular, Ankara, Turkey
4Department of Physics, Bilkent University, Bilkent, Ankara, Turkey
5Department of Electrical ans Electronics Engineering, Bilkent University, Bilkent, Ankara, Turkey
Поступила в редакцию: 16 марта 2010 г.
Выставление онлайн: 20 декабря 2010 г.

Electrical transport data for Al-rich AlGaN layers grown by metal-organic chemical vapor deposition (MOCVD) are presented and analyzed in the temperature range 135-300 K. The temperature dependence of electrical conductivity indicated that conductivity in the films was controlled by potential barriers caused by carrier depletion at grain boundaries in the material. The Seto's grain boundary model provided a complete framework for understanding of the conductivity behavior. Various electrical parameters of the present samples such as grain boundary potential, donor concentration, surface trap density, and Debye screening length were extracted.
  1. S. Nakamura, S. Pearton, G. Fasol. The Blue Laser Diode: The Complete Story (Springer, N.Y., 2000)
  2. S.B. Lisesivdin, A. Yildiz, S. Acar, M. Kasap, S. Ozcelik, E. Ozbay. Appl. Phys. Lett., 91, 102 113 (2007)
  3. P. Raszkiewicz, B. Paszkiewicz, J. Kozlowski, T. Piasecki, W. Kosnikowski, M. T aczala. J. Cryst. Growth, 248, 487 (2003)
  4. A. Szyszka, B. Paszkiewicz, R. Paszkiewicz, M. T acza a. Mater. Sci. --- Poland, 26, 221 (2008)
  5. I. Shalish, L. Kronik, Y. Shapira, S. Zamir, B. Meyler, J. Salzman. Phys. Rev. B, 61, 15 573 (2000)
  6. A. Szyszka, B. Paszkiewicz, R. Paszkiewicz, M. T acza a. Vacuum, 82, 1034 (2008)
  7. A. Yildiz, S.B. Lisesivdin, M. Kasap, S. Ozcelik, E. Ozbay. N. Balkan. Appl. Phys. A, 98, 557 (2010)
  8. S.B. Lisesivdin, N. Balkan, O. Makarovsky, A. Patan\`e, A. Yildiz, M.D. Caliskan, M. Kasap, S. Ozcelik, E. Ozbay. J. Appl. Phys., 105, 093 701 (2009)
  9. S.B. Lisesivdin, S. Demirezen, M.D. Caliskan, A. Yildiz, M. Kasap, S. Ozcelik, E. Ozbay. Semicond. Sci. Technol., 23, 095 008 (2008)
  10. S. Acar, S.B. Lisesivdin, M. Kasap, S. Ozcelik, E. Ozbay. Thin Sol. Films, 516, 2041 (2008)
  11. J. Oila, K. Saarinen, A.E. Wickenden, D.D. Koleske, R.L. Henry, M.E. Twigg. Appl. Phys. Lett., 82, 1021 (2003)
  12. N. Sarkar, S. Dhar, S. Ghosh. J. Phys.: Condens. Matter, 15, 7325 (2003)
  13. Diffrac plus 2006. TOPAS v. 3.0 (Manual), BRUKER AXS GmbH (Karlsruhe)
  14. B.D. Cullity. Elements of X-ray Diffraction, 2nd edn (Addison-Wesley, Reading, MA, 1978)
  15. J.Y.W. Seto. J. Appl. Phys., 46, 5247 (1975)
  16. H. Morkoc. Nitride Semiconductors and Devices (Springer, Heidelberg, 1999)
  17. J.W. Orton, M.J. Powel. Rep. Progr. Phys., 43, 1263 (1980)
  18. J. Bernat, P. Javorka, M. Marso, P. Kordov s. Appl. Phys. Lett., 83, 5455 (2003)
  19. J. Dutta, D. Bhattacharyya, A.B. Maiti, A.K. Pal. Vacuum, 46, 17 (1995)
  20. J. Salzman, C. Uzan-Saguy, B. Meyler, R. Kalish. Phys. Status Solidi A, 176, 683 (1999)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.