Фотоиндуцированная перенормировка запрещенной зоны в вырожденных узкозонных эпитаксиальных пленках n-InGaN
Российский научный фонд, 24-22-00320
Кудрявцев К.Е.1, Андреев Б.А.1, Лобанов Д.Н.1, Калинников М.А.1, Новиков А.В.1, Красильник З.Ф.1
1Институт физики микроструктур Российской академии наук, Нижний Новгород, Россия

Email: konstantin@ipmras.ru
Поступила в редакцию: 19 ноября 2025 г.
В окончательной редакции: 29 ноября 2025 г.
Принята к печати: 1 декабря 2025 г.
Выставление онлайн: 2 января 2026 г.
На основании анализа низкотемпературных спектров стимулированной эмиссии делаются выводы о величине эффекта сужения запрещенной зоны Δ EBGN в вырожденных, n~1019 см-3, эпитаксиальных пленках InGaN с долей индия ~ 60 % в условиях интенсивного фотовозбуждения. Величина d(Δ EBGN)/dn превышает 2 мэВ/1017 см-3 и определяется, по-видимому, преимущественно кулоновским взаимодействием вырожденных (равновесных) электронов и неравновесных дырок, локализованных в неоднородностях зонного потенциала. Соответствующая поправка к ширине запрещенной зоны заметно превышает вклад обменного взаимодействия электронов, а суммарный эффект перекомпенсирует заливку электронных состояний (эффект Бурштейна-Мосса) и обеспечивает красный сдвиг линии генерации при большей интенсивности накачки. Это напрямую определяет особенности конкуренции модового усиления и потерь в объемных пленках In(Ga)N. Полученные результаты могут быть спроецированы и на перспективные низкоразмерные структуры для излучателей красного диапазона с квантовыми ямами на основе InGaN "средних" составов. Ключевые слова: нитрид индия-галлия, стимулированная эмиссия, перенормировка запрещенной зоны.
- G.B. Cross, Z. Ahmad, D. Seidlitz, M. Vernon, N. Dietz, D. Deocampo, D. Gebregiorgis, S. Lei, A. Kozhanov. J. Cryst. Growth, 536, 125574 (2020). DOI: 10.1016/j.jcrysgro.2020.125574
- L. Chen, S. Sheng, B. Sheng, T. Wang, L. Yang, B. Zhang, J. Yang, X. Zheng, Z. Chen, P. Wang, W. Ge, Bo Shen, X. Wang. Appl. Phys. Express, 15, 011004 (2022). DOI: 10.35848/1882-0786/ac4449
- A. Imran, M. Sulaman, M. Yousaf, M.A. Anwar, M. Qasim, G. Dastgeer, K.A.A. Min-Dianey, B. Wang, X. Wang. Adv. Mater. Interf., 10, 2200105 (2023). DOI: 10.1002/admi.202200105
- V. Yu, Davydov, A.A. Klochikhin, V.V. Emtsev, D.A. Kurdyukov, S.V. Ivanov, V.A. Vekshin, F. Bechstedt, J. Furthmuller, J. Aderhold, J. Graul, A.V. Mudryi, H. Harima, A. Hashimoto, A. Yamamoto, E.E. Haller. Phys. Status Solidi В, 234, 787 (2002). DOI: 10.1002/1521-3951(200212)234:3<787::AID-PSSB787>3.0.CO;2-H
- S.C. Jain, J.M. McGregor, D.J. Roulston. J. Appl. Phys., 68, 3747 (1990). DOI: 10.1063/1.346291
- S.C. Jain, D.J. Roulston. Solid-State Electron., 34, 453 (1991). DOI: 10.1016/0038-1101(91)90149-S
- X. Zhang, S.-J. Chua, W. Liu, K.B. Chong. Appl. Phys. Lett., 72, 1890 (1998). DOI: 10.1063/1.121217
- M. Yoshikawa, M. Kunzer, J. Wagner, H. Obloh, P. Schlotter, R. Schmidt, N. Herres, U. Kaufmann. J. Appl. Phys., 86, 4400 (1999). DOI: 10.1063/1.371377
- R. Kudrawiec, M. Motyka, J. Misiewicz, B. Paszkiewicz, R. Paszkiewicz, M. Tlaczala. J. Phys. D: Appl. Phys., 41, 165109 (2008). DOI: 10.1088/0022-3727/41/16/165109
- В.Ю. Давыдов, А.А. Клочихин. ФТП, 38, 897 (2004)
- S.P. Fu, T.T. Chen, Y.F. Chen. Semicond. Sci. Technol., 21, 244 (2006). DOI: 10.1088/0268-1242/21/3/005
- E. Alarcon-Llado, T. Brazzini, J.W. Ager. J. Phys. D: Appl. Phys., 49, 255102 (2016). DOI: 10.1088/0022-3727/49/25/255102
- F. Chen, A.N. Cartwright, H. Lu, W.J. Schaff. J. Cryst. Growth, 269, 10 (2004). DOI: 10.1016/j.jcrysgro.2004.05.028
- K. Fukunaga, M. Hashimoto, H. Kunugita, J. Kamimura, A. Kikuchi, K. Kishino, K. Ema. Appl. Phys. Lett., 95, 232114 (2009). DOI: 10.1063/1.3272916
- A. Mohanta, D.-J. Jang, M.-S. Wang, L.W. Tu. J. Appl. Phys., 115, 044906 (2014). DOI: 10.1063/1.4862958
- Y.J. Wang, S.J. Xu, Q. Li, D.G. Zhao, H. Yang. Appl. Phys. Lett., 88, 041903 (2006). DOI: 10.1063/1.2168035
- G. Xu, G. Sun, Y.J. Ding, H.-P. Zhao, G. Liu, J. Zhang, N. Tansu. J. Appl. Phys., 113, 033104 (2013). DOI: 10.1063/1.4775605
- D. Iida, K. Ohkawa. Semicond. Sci. Technol., 37, 013001 (2022). DOI: 10.1088/1361-6641/ac3962
- P. Li, H. Li, M.S. Wong, P. Chan, Y. Yang, H. Zhang, M. Iza, J.S. Speck, S. Nakamura, S.P. Denbaars. Crystals, 12, 541 (2022). DOI: 10.3390/cryst12040541
- X. Zhao, Ke Sun, S. Cui, B. Tang, H. Hu, S. Zhou. Adv. Photon. Res., 4, 2300061 (2023). DOI: 10.1002/adpr.202300061
- T.H. Ngo, B. Gil, B. Damilano, K. Lekhal, P. de Mierry. Superlatt. Microstruct., 103, 245 (2017). DOI: 10.1016/j.spmi.2017.01.026
- Д.Н. Лобанов, М.А. Калинников, К.Е. Кудрявцев, Б.А. Андреев, П.А. Юнин, А.В. Новиков, Е.В. Скороходов, З.Ф. Красильник. ФТП, 58, 220 (2024). DOI: 10.61011/FTP.2024.04.58547.6357H
- К.Е. Кудрявцев, Д.Н. Лобанов, М.А. Калинников, А.В. Новиков, Б.А. Андреев, З.Ф. Красильник. Письма ЖЭТФ, 121, 688 (2025). DOI: 10.31857/S0370274X25040234
- S.A. Kazazis, E. Papadomanolaki, M. Androulidaki, M. Kayambaki, E. Iliopoulos. J. Appl. Phys., 123, 125101 (2018). DOI: 10.1063/1.5020988
- V. Lebedev, V. Cimalla, J. Pezoldt, M. Himmerlich, S. Krischok, J.A. Schaefer, O. Ambacher, F.M. Morales, J.G. Lozano, D. Gonzalez. J. Appl. Phys., 100, 094902 (2006). DOI: 10.1063/1.2363233
- T.D. Veal, I. Mahboob, L.F.J. Piper, C.F. McConville, H. Lu, W.J. Schaff. J. Vac. Sci. Technol. B, 22, 2175 (2004). DOI: 10.1116/1.1771672
- S. Hess, R.A. Taylor, J.F. Ryan, B. Beaumont, P. Gibart. Appl. Phys. Lett., 73, 199 (1998). DOI: 10.1063/1.121754
- K.L. Shaklee, R.F. Leheny. Appl. Phys. Lett., 18, 475 (1971). DOI: 10.1016/0022-2313(73)90072-0
- L. Dal Negro, P. Bettotti, M. Cazzanelli, D. Pacifici, L. Pavesi. Optics Commun., 229, 337 (2004). DOI: 10.1016/j.optcom.2003.10.051
- S.-Ze Sun, Yu-C. Wen, S.-H. Guol, H.-M. Lee, S. Gwo, C.-K. Sun. J. Appl. Phys., 103, 123513 (2008). DOI: 10.1063/1.2940737
- S.P. Fu, Y.F. Chen, K. Tan. Solid State Commun., 137, 203 (2006). DOI: 10.1016/j.ssc.2005.11.013
- J. Wu, W. Walukiewicz, W. Shan, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu, W.J. Schaff. Phys. Rev. B, 66, 201403 (2002). DOI: 10.1103/PhysRevB.66.201403
- D.S. Arteev, A.V. Sakharov, E.E. Zavarin, W.V. Lundin, A.N. Smirnov, V.Yu. Davydov, M.A. Yagovkina, S.O. Usov, A.F. Tsatsulnikov. J. Phys.: Conf. Ser., 1135, 012050 (2018). DOI: 10.1088/1742-6596/1135/1/012050
- S.A. Kazazis, E. Papadomanolaki, E. Iliopoulos. J. Appl. Phys., 127, 225701 (2020). DOI: 10.1063/1.5128448
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.