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На основании анализа низкотемпературных спектров стимулированной эмиссии делаются выводы о

величине эффекта сужения запрещенной зоны 1EBGN в вырожденных, n ∼ 1019 см−3, эпитаксиальных пленках

InGaN с долей индия ∼ 60% в условиях интенсивного фотовозбуждения. Величина d(1EBGN)/dn превышает

2 мэВ/1017 см−3 и определяется, по-видимому, преимущественно кулоновским взаимодействием вырож-

денных (равновесных) электронов и неравновесных дырок, локализованных в неоднородностях зонного

потенциала. Соответствующая поправка к ширине запрещенной зоны заметно превышает вклад обменного

взаимодействия электронов, а суммарный эффект перекомпенсирует заливку электронных состояний (эффект
Бурштейна−Мосса) и обеспечивает красный сдвиг линии генерации при большей интенсивности накачки.

Это напрямую определяет особенности конкуренции модового усиления и потерь в объемных пленках

In(Ga)N. Полученные результаты могут быть спроецированы и на перспективные низкоразмерные структуры

для излучателей красного диапазона с квантовыми ямами на основе InGaN
”
средних“ составов.
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1. Введение

Несмотря на значительный прогресс как в техно-

логии эпитаксиального роста III-нитридов [1–3], так

и в диагностике получаемых структур, материальная

система InGaN остается достаточно сложной. Так, для не

слишком толстых (∼ 1мкм и менее) объемных пленок

бинарного InN и индийобогащенных тройных раство-

ров InGaN по-прежнему характерны весьма высокая

дефектность и сильное, в пределах до 1018−1019 см−3,

фоновое легирование n-типа. В совокупности с малой

эффективной массой электронов это приводит к суще-

ственному проявлению эффектов Бурштейна–Мосса и

перенормировки ширины запрещенной зоны, определя-

ющих разнонаправленные энергетические сдвиги (далее

1EF и 1EBGN соответственно) в спектрах фотоотклика.

В рамках простейших приближений зависимость сдвига

Бурштейна–Мосса от концентрации электронов n имеет

вид 1EF ∼ n2/3 [4]. В перенормировку же зоны, хорошо

описанную, например, в работе [5], дают вклад несколько
составляющих. Это обменное взаимодействие основ-

ных носителей заряда 1Eexch, корреляционный вклад

электрон-дырочного взимодействия 1Ecorr, и взаимодей-

ствие носителей с примесными центрами 1Ee−i . Кон-

центрационные зависимости этих слагаемых имеют вид

∼ n1/3, ∼ n1/4 и ∼ n1/2 соответственно [5,6], и, поскольку
все эти зависимости более слабые, чем n2/3 в величине

1EF, в пределе больших n полоса эмиссии и край

межзонного поглощения сдвигаются в синюю сторону:

1EF > |1EBGN|.

Для относительно новых III-N материалов эффекты

перенормировки зоны изучены в гораздо меньшей сте-

пени в сравнении с
”
классическими“ полупроводниками,

такими как, например, GaAs, GaSb, InSb или InP. Если

для GaN количественные оценки 1EBGN, представлен-

ные в различных работах [7–9], в целом сходны, то

данные для InN, напротив, крайне разнородны [10–12].
Отметим также, что в подавляющем числе работ, рас-

сматривающих спектральные сдвиги люминесцентного

отклика InN, основное внимание уделялось роли именно

равновесной концентрации электронов. Динамическая

составляющая эффекта, связанная с интенсивной накач-

кой, отмечалась в первую очередь в экспериментах по

методике
”
накачка-зондирование“ (например, [13–15])

лишь на качественном уровне. Что же касается тройных

растворов InGaN, то вопрос перенормировки зоны под-

нимался в заметном числе работ по гетероструктурам

с квантовыми ямами InGaN/GaN [16,17], однако лишь

для достаточно широкозонных структур синего диапа-

зона и более коротковолновых. Для InGaN с высокой

(> 30−40%) долей индия подобных исследований не

проводилось.

В данной работе экспериментально изучается кон-

куренция эффектов заливки электронных состояний и

сужения запрещенной зоны в эпитаксиальных слоях

InGaN с долей индия x In ∼ 60% в режиме интенсив-

ной оптической накачки. Выбор в пользу относительно

”
широкозонных“ InGaN, а не InN-структур, обуслов-

лен в том числе и современными трендами: InGaN-

светодиоды красного диапазона являются на настоящий

момент одним из наиболее
”
горячих“ направлений в
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Рис. 1. a — спектр ФЛ образца с активным слоем In0.6Ga0.4N, измеренный при низкой температуре в режиме слабой накачки при

регистрации ФЛ с лицевой поверхности структуры. Спектральная ширина полосы люминесценции (на полувысоте) превышает

100 мэВ. b — сверху: ростовая схема исследуемого образца — осаждаемые слои и профиль показателя преломления; снизу:

профили поглощения излучения накачки (pump) и распределения поля волноводных мод, наиболее вероятно участвующих в

процессах стимулированного излучения — основной T E0-моды и возбужденной T E1. c — спектры СИ в зависимости от плотности

мощности накачки, записанные при наблюдении с торца структуры. Для сравнения приведен (не в масштабе) спектр спонтанной

эмиссии (PL).

III-нитридной тематике [18–20], а их эффективность

в разрабатываемых полноцветных дисплеях высокого

разрешения превосходит таковую для AlGaInP. Мощ-

ность возбуждения выбирается достаточно большой с

тем, чтобы достижимые неравновесные концентрации

(δn ∼ 1018 см−3) соответствовали типичным рабочим

концентрациям в InGaN-светодиодах [21]. При низких

температурах подобные значения δn выше пороговых

для возникновения в изучаемых слоях InGaN стимули-

рованного излучения (СИ), и в данной работе выводы о

величине перенормировки запрещенной зоны делаются

на основании анализа спектров именно стимулирован-

ной эмиссии, в то время как рассмотрение спонтанной

эмиссии (фотолюминесценции, ФЛ) может оказаться

менее точным вследствие большой (> 100 мэВ, рис. 1, a)
спектральной ширины фотоотклика.

2. Методика эксперимента

Изучаемые структуры, получаемые на подложках

c-Al2O3 методом молекулярно-лучевой эпитаксии с

плазменной активацией азота, состояли из буфер-

ных слоев AlN (100 нм)/GaN (700 нм) и активного слоя

In0.6Ga0.4N (680 нм); соответствующая ростовая схема

приведена на рис. 1, b. Подавление фазовой сепарации

в слое InGaN обеспечивалось высокотемпературным

азотобогащенным ростом [22]. Плотность прорастающих

дислокаций в слое InGaN оценивалась из рентгеновских

измерений на уровне ND ≈ 6 · 1010 см−2, остаточная

концентрация электронов — по холловским данным:

nHall ≈ 1.5 · 1019 см−3. При регистрации как ФЛ (с ли-

цевой поверхности структуры), так и СИ (со стороны

скола) накачка образцов осуществлялась на длине волны

Физика и техника полупроводников, 2025, том 59, вып. 9
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λexc = 670 нм. В первом случае использовался диодный

лазер непрерывного действия, во втором — парамет-

рический генератор света с длительностью импульса

τexc ≈ 10 нс. При измерениях СИ луч накачки фокуси-

ровался цилиндрической линзой в полоску, полностью

засвечивающую образец по длине от края до края

(Lmax ≈ 2.2мм) при ширине ∼ 120 мкм. Люминесцент-

ный отклик анализировался решеточным монохромато-

ром и детектировался кремниевой (прибор с зарядовой

связью) ПЗС-матрицей. Все измерения проводились в

гелиевом криостате замкнутого цикла при температуре

T ≈ 5K.

Отметим, что все измерения в данной работе про-

водились с использованием интегрирующего по вре-

мени фотоприемника, т. е. без временного разрешения,

хотя рассматриваемые эффекты
”
заливки“ электрон-

ных состояний и перенормировки запрещенной зоны

при мощной межзонной подсветке безусловно явля-

ются динамическими. Здесь мы используем тот факт,

что возбуждающие лазерные импульсы (≈ 10 нс) яв-

ляются длинными в сравнении с характерными вре-

менами жизни неравновесных носителей в изучаемых

структурах (< 100 пс [23]), а значит, реализуется ква-

зистационарный режим накачки. Кроме того, накачка

активной области структуры в наших экспериментах

существенно неоднородна по глубине слоя InGaN. При

коэффициенте поглощения возбуждающего излучения

αexc ≈ 6 · 104 см−1, оценениваемом напрямую из транс-

миссионных измерений и хорошо согласующимся с [24],
характерный размер

”
прокачиваемой“ области составля-

ет dexc = 1/αexc ≈ 150 нм (см. рис. 1, b). В этом смысле

говорить о
”
перенормировке запрещенной зоны“ мож-

но лишь в терминах усредненных величин (впрочем,
это замечание относится к подавляющему большинству

экспериментальных работ по данному вопросу). Для

III-N структур подобный подход видится оправданным

еще и в силу принципиальной неоднородности активного

слоя InGaN — хорошо известно, что вблизи интер-

фейса InGaN/GaN с буферным слоем всегда присут-

ствует сильнодефектная область релаксации упругих

напряжений (∼ 100−200 нм [25]), а у поверхности —

аккумуляционный слой электронов (∼ 10−20 нм [26]).
Это затрудняет возможности как однородной

”
прокачки“

слоев In(Ga)N, так и корректной интерпретации получа-

емых данных. Выбранная в данной работе длина волны

накачки λexc = 670 нм является компромиссным решени-

ем, позволяющим, с одной стороны,
”
отстроиться“ от

интерфейса InGaN/GaN, а с другой — минимизировать

вклад приповерхностного слоя в регистрируемые спек-

тры эмиссии.

3. Результаты и обсуждение

Спектры низкотемпературной эмиссии исследуемого

образца представлены на рис. 1, a для режима ФЛ при

слабой накачке и на рис. 1, c для режима СИ при

мощном импульном возбуждении. Видно, что линия СИ

возникает на длинноволновом крыле ФЛ и смещается в

сторону меньших энергий по мере роста интенсивности

накачки. Последнее обстоятельство в целом не характер-

но для полупроводниковых лазеров. Так, в (In,Al)GaAs
структурах типично имеет место синий сдвиг линии

генерации при росте накачки. Красное же смещении

линии СИ неоднократно наблюдалось ранее именно в

III-нитридах, в том числе в объемном GaN [27], и объ-

яснялось эффектом перенормировки запрещенной зоны

(хотя экстремальные интенсивности накачки в [27], до
∼ 10МВт/см2, могут сказываться на интерпретации дан-

ных эксперимента). Также заметим, что красный сдвиг

полосы СИ в InGaN не может определяться эффектами

большего перепоглощения коротковолнового вторично-

го излучения по мере распространения в усиливающей

среде. За счет вырожденного характера слоев n-InGaN

(EF ≈ Ec + 130 мэВ) линия СИ существенно отстроена

от максимума ФЛ и края межзонного поглощения, и

основными механизмами оптических потерь, определя-

ющих порог генерации, представляются дифракционные

потери αdiff и потери на свободных носителях заряда

αFCA. Суммарная величина этих потерь оценивается

в изучаемых структурах на уровне десятков см−1, и

здесь важно, что как αdiff, так и αFCA имеют крайне

слабую спектральную зависимость в пределах смещения

линии СИ.

Эволюцию регистрируемых спектров СИ ISE(~ω) по

мере увеличения интенсивности накачки Pexc (рис. 1, c)
можно рассмотреть в рамках модели одномерного опти-

ческого усилителя [28]:

ISE(Pexc, ~ω) =
Asp(Pexc, ~ω)

gmod(Pexc, ~ω)

× (exp[gmod(Pexc, ~ω)Lmax] − 1). (1)

Здесь Asp — интенсивность спонтанной эмиссии (в про-

извольных единицах), gmod — модовый коэффициент

усиления, Lmax — длина пробега излучения в усиливаю-

щей среде (фактически размер образца; в нашем случае

Lmax ≈ 2.2мм). За счет широкой полосы спонтанной

эмиссии можно с хорошей точностью (на фоне экс-

поненциального множителя) пренебречь спектральной

зависимостью Asp в выражении (1), а интенсивность

спонтанной эмиссии считать линейной по мощности

накачки:

Asp(Pexc, ~ω) ≈ const(~ω) ∼ (n0 + δn) × δp ∼ Pexc. (2)

Это подразумевает не слишком интенсивную накачку,

когда неравновесные концентрации электронов и дырок

δn = δp много меньше фоновой концентрации электро-

нов n0. Кроме того, мы не рассматриваем избыточно

большие накачки из-за возможного влияния эффектов

насыщения усиления и считаем задачу однородной по

длине области возбуждения, что является одним из

базовых принципов применимости (1).
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Рис. 2. a — cпектры усиления при различных значениях интенсивности накачки, пересчитанные в соответствии с (1) из

измеренных спектров стимулированной эмиссии. b — оценка величины модового усиления по методике VSL. Полученные при

различных Pexc значения gmod используются для
”
калибровки“ спектров на панели a по шкале ординат. c — величина модового

усиления в максимуме спектра в зависимости от мощности накачки.

В рамках обозначенных ограничений мы может пе-

ресчитать измеренные спектры СИ в спектры усиле-

ния (рис. 2, a) в соответствии с (1); поскольку для

корректного решения этой задачи нужна
”
калибровка“

абсолютных величин модового усиления, дополнительно
по методике VSL (

”
variable stripe length“, [28]) проводи-

лись измерения gmod в максимуме линии СИ (рис. 2, b).

Отметим, что полученная зависимость g
peak
mod(Pexc), при-

веденная на рис. 2, c, отклоняется от линейной при

достаточно интенсивной накачке. В то же время даже

при максимальной мощности возбуждения, используе-

мой в данной работе (Pmax
exc ≈ 245 кВт/см2), роль эф-

фектов насыщения усиления остается, по-видимому, не

очень заметной. Согласно [29], критерием режима
”
насы-

щения“ является соотношение g
peak
mod (P

max
exc ) × Lmax ≥ 10;

в наших же экспериментах g
peak
mod × Lmax < 5. По этой

причине сублинейный характер зависимости g
peak
mod(Pexc)

может скорее объясняться интенсификацией безызлуча-

тельных процессов и разогревными эффектами. В от-

ношении первого, вклад избыточных носителей в темп

оже-процессов — предположительно доминирующего

межзонного механизма в изучаемых слоях InGaN —

оценен в данной работе далее. Оценки же разогрева

электронов при мощной накачке сложно получить из

данных эксперимента. Поскольку в In(Ga)N эмиссия

типично происходит на переходах
”
свободный электрон–

локализованная дырка“ [10], спектры ФЛ и СИ оказы-

ваются неоднородно уширенными за счет нетеплового

распределения дырок в зонном потенциале, и, соответ-

ственно, коротковолновый край спектра ФЛ не отражает

релевантную электронную температуру. Отметим лишь,

что данные по скорости остывания горячих электронов

в InN [30] позволяют рассчитывать на умеренные вели-

чины разогрева.

Перейдем теперь к рассмотрению спектрального сдви-

га СИ с ростом мощности накачки. На рис. 3, a при-

ведена диаграмма, отражающая заполнение состояний в

зоне проводимости равновесными (n0) и избыточными

(δnmax) электронами, а также распределение неравновес-
ных дырок (pmax) в валентной зоне при максимальной

мощности накачки. Масштабы хвостов зон и параметры

локализации дырок, а также величина n0 (непосредствен-
но в излучающей области структуры, отличающаяся

от
”
холловской“ концентрации, усредненной по всему

слою InGaN: n0 ≈ 8 · 1018 см−3 < nHall) для изучаемо-

го образца получены авторами ранее в работе [23].
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Рис. 3. a — энергетическое распределение неравновесных электронов и дырок при максимальной мощности накачки. DoSCB и

DoSVB — плотность состояний в зоне проводимости и валентной зоне с учетом хвостов зон; распределение дырок считается

”
замороженным“ за счет локализации во флуктуациях зонного потенциала. b — δEmax — измеряемый сдвиг максимума в

спектрах усиления в зависимости от интенсивности накачки; δEF — расчет дополнительной
”
заливки“ зоны проводимости за

счет неравновесных электронов; δEBGN ≡ δEmax − δEF — оценка величины фотоиндуцированного сужения запрещенной зоны.

При
”
темновой“ концентрации электронов n0 уровень

Ферми находится на ∼ 130 мэВ выше номинального

дна зоны проводимости E
(0)
c , а с ростом неравновес-

ной концентрации δn сдвигается вверх со скоростью

dEF/d(δn) ≈ 1 мэВ/1017 см−3. Что же касается неравно-

весных дырок, то даже при максимальной интенсивности

накачки оценка их концентрации (при временах жизни

носителей, не превышающих τPL ≈ 60 пс [23]) состав-

ляет pmax ≤ 1.5 · 1018 см−3. Это соответствует малым

(< 0.1) факторам заполнения локализованных дырочных

состояний в хвосте валентной зоны, а значит, и вид

энергетического распределения дырок,
”
замороженных“

в минимумах случайного зонного потенциала, не должен

заметно зависеть от интенсивности накачки (подобные
рассуждения для InN приводились и ранее, например,

в [31]). Таким образом,
”
синяя“ составляющая сдвига

спектров усиления в основном должна определяться

заполнением состояний в зоне проводимости (δEF на

рис. 3, b). В то же время итоговый сдвиг оказывается

”
красным“ (δEmax на рис. 3, b), что говорит о преобла-

дании конкурирующего эффекта сужения запрещенной

зоны: |δEBGN| > δEF .

Отметим, что в силу красного сдвига СИ с ростом

интенсивности возбуждения неоднородная по глубине

InGaN-слоя накачка структуры не препятствует до-

стижению стимулированной эмиссии. Линия СИ, из-

начально отстроенная от межзонного поглощения за

счет сдвига Бурштейна–Мосса, оказывается еще более

отстроенной от края поглощения в
”
холодной“, непро-

качиваемой части активного слоя, в результате чего

межзонное усиление в приповерхностном слое структу-

ры конкурирует с гораздо более слабыми механизмами

потерь (αdiff и αFCA), распространяющимися, однако,

на весь пространственный масштаб волноводной моды

(см. рис. 1, b).
Далее следует пересчитать величину δEBGN(Pexc) в

концентрационную зависимость 1EBGN(δn) и сравнить

результаты с имеющимися в литературе данными. По-

следние для бинарных n-GaN и n-InN представлены на

рис. 4, a (энергия 1EBGN отложена по модулю величины

для удобства сопоставления с движением уровня Ферми

электронов 1EF). Отметим, что в литературе нет устояв-

шихся представлений о вкладах конкретных механизмов

(обменного, корреляционного и электрон-примесного)
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трации электронов в n-GaN и n-InN. Величины 1EGaN
F и 1E InN

F задаются выражением 1EF = 3.58× (m0/m∗)(n0/10
18)2/3 мэВ [4]

для m∗

InN ∼ 0.05m0 и m∗

GaN ∼ 0.2m0 соответственно. Зависимость 1EGaN
BGN(n0) построена по данным работы [7], 1E InN

BGN(n0) — по

данным [11]. Зависимости 1E∗

F и 1E∗

BGN построены для In0.6Ga0.4N линейной интерполяцией для InN и GaN. Стрелка отмечает

”
рабочую точку“ n0 ∼ 8 · 1018 см−3 и ее смещение при накачке образца; b — пересчет плотности мощности накачки Pexc в среднюю

по возбуждаемой области концентрацию неравновесных электронов и дырок δn. Пунктир — оценка при фиксированном времени

жизни носителей при слабой накачке (τPL ∼ 60 пс), символы — с учетом влияния неравновесной концентрации на скорость оже-

процессов. c — символы: измеренное
”
динамическое“ сужение запрещенной зоны в зависимости от избыточной концентрации δn

электронов и дырок, линия 1E6
BGN — аппроксимация этих данных функцией ∝ δnβ , β = 1.07. 1E

(e−h)
BGN — оценка вклада электрон-

дырочного взаимодействия. Энергия 1E+
BGN отсчитывается от

”
темнового“ значения 1E∗

BGN(n0).

взаимодействия в итоговую величину 1E InN
BGN. По этой

причине далее мы будем рассматривать 1E InN
BGN как оцен-

ку именно для обменного (хартри–фоковского) взаимо-
действия, наиболее

”
универсального“ и наименее чув-

ствительного к специфике конкретного образца. Видно,

что при всех практически реализующихся в InN фоно-

вых концентрациях электронов (n0 > 2 · 1017 см−3) вы-

полняется соотношение 1E InN
F > 1E InN

BGN, и это соответ-
ствует повсеместно наблюдаемому в InN синему сдвигу

спектров ФЛ и поглощения по мере роста остаточ-

ной концентрации электронов. Для тройных растворов

InGaN
”
точка компенсации“ (1EF ≈ 1EBGN) сдвигается

в сторону бо́льших концентраций, однако не слишком
сильно, и в наших экспериментах при n0 ≈ 8 · 1018 см−3

суммарный эффект, обеспечиваемый равновесными и

избыточными электронами, должен приводить к синему

сдвигу. В то же время в эксперименте наблюдается

красный сдвиг эмиссии, а значит, величина сужения

зоны 1E6
BGN(δn) значительно превышает

”
обменную“

поправку 1E∗

BGN(δn), получаемую на рис. 4, a линейной

интерполяцией между n-GaN и n-InN. Здесь неравновес-

ная концентрация δn оценивается (рис. 4, b) из баланса

фотогенерации и оже-рекомбинации избыточных носите-

лей:

Gexc ≡
Pexc

~ωpumpdexc

= CA(n0 + δn)2δn (3)

с
”
калибровкой“ эффективного коэффициента оже-

рекомбинации CA по времени спада ФЛ в режиме слабой

накачки. Из рис. 4, c видно, что
”
дырочная“ поправка

1E
(e−h)
BGN ≡ 1E6

BGN − 1E∗

BGN приблизительно линейно за-

висит от неравновесной концентрации δn в рассмат-
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риваемом диапазоне ∼ (0.4−1.3) · 1018 см−3 и в разы

превышает
”
электронную“ компоненту 1E∗

BGN, достигая

∼ 1.9мэВ/1017 см−3. В качестве возможного объяснения

столь заметного эффекта можно предложить следую-

щее. При низких температурах неравновесные дырки

локализуются в неоднородностях зонного потенциала

и в некоторой степени являются аналогом заряженных

примесей. Энергия их взаимодействия с вырожденными

электронами вносит вклад в сужение запрещенной зоны,

и величина этого вклада может быть оценена в соответ-

ствии с [32]:

1Ee−i = −
4πe2δn

εs aBk3
TF

. (4)

Здесь εs — статическая диэлектрическая проницаемость

InGaN, а kTF — волновой вектор Томаса–Ферми, учиты-

вающий экранировку потенциала
”
примеси“ вырожден-

ными электронами. В качестве же эффективного боров-

ского радиуса aB можно взять масштаб локализации ды-

рок a loc, оцениваемый по характерному энергетическому

масштабу хвоста валентной зоны Wh: r2loc = ~
2/2mhWh.

Для Wh ∼ 43 мэВ [23], mh ∼ m0 и εs ∼ 6.8 [24] величина
r loc оценивается на уровне 0.95 нм, а получаемое зна-

чение 1Ee−i/δn ∼ 2.1 мэВ/1017 см−3 хорошо сходится с

данными рис. 4, c, что косвенно указывает на допусти-

мость подобного подхода.

В рамках описанной гипотезы рассматриваемый эф-

фект фотоиндуцированного сужения запрещенной зоны

может быть выражен в изучаемых слоях InGaN
”
сред-

них“ составов сильнее, чем в бинарном InN, в силу

бо́льших флуктуаций зонного потенциала в тройных

растворах InGaN [33,34] и соответствующего возраста-

ния роли локализации неравновесных дырок. Помимо

очевидной зависимости от
”
рабочей точки“ — фоновой

концентрации электронов n0, менять которую в широ-

ких пределах затруднительно, — суммарная величина

1EBGN должна зависеть и от температуры, откликаясь

на перераспределение дырок в зонном потенциале и

их делокализацию по мере продвижения от криогенных

температур к комнатной. Подобная ситуация сложна

для корректного модельного описания, однако может

оказаться близкой к рабочим режимам перспективных

InGaN-структур красного и ближнего ИК диапазонов,

и температурные измерения видятся необходимым про-

должением данной работы, направленным на детальную

проверку получаемых результатов.

4. Заключение

Таким образом, показано, что в вырожденных

(n ∼ 1019 см−3) слоях тройных растворов InGaN
”
сред-

них“ составов (x In ∼ 60%) сильно выражен эффект

сужения запрещенной зоны при фотовозбуждении, пере-

компенсирующий эффект Бурштейна–Мосса и обеспечи-

вающий в итоге красный сдвиг линии стимулированной

эмиссии по мере роста интенсивности накачки. Пред-

полагается, что определяющую роль здесь играет куло-

новское взаимодействие локализованных неравновесных

дырок с вырожденными электронами, вклад которого су-

щественно превышает вклад обменного взаимодействия

электронов в суммарную величину 1EBGN. Учет этого

фактора может быть важен для развития подходов к

описанию характеристик стимулированной эмиссии, ана-

лиза конкуренции усиления и потерь как в однородных

объемных слоях InGaN в режиме неравномерной про-

качки активной области, так и в структурах со сложным

профилем легирования состава и переменной шириной

запрещенной зоны. Красный сдвиг СИ отмечался ранее

и для других материальных систем, однако именно для

III-N структур, эффективная эмиссия в которых в силу

дефектности материала достигается лишь при достаточ-

но сильной инжекции, он может оказаться наиболее

заметным, в том числе и в низкоразмерных InGaN-

структурах, активно продвигаемых сейчас в сторону

красного и ИК диапазонов.
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Photoinduced band-gap renormalization
in degenerate narrow-gap n-InGaN
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Abstract Based on the analysis of low-temperature stimulated

emission spectra, conclusions are drawn about the band gap

narrowing effect (1EBGN) in degenerate, n ∼ 1019 cm−3, epitaxial

InGaN films with an indium content of 60% under intense

photoexcitation. A red shift of the generation line is demonstrated

due to the large 1EBGN exceeding 2meV/1017cm−3, apparently

provided by the Coulomb interaction of degenerate (equilibrium)
electrons and nonequilibrium holes localized in the local extrema

of the fluctuating band potential, with limited contribution from

exchange (Hartree-Fock) interaction. This behavior directly

determines the features of the competition between modal gain

and losses in bulk In(Ga)N films. The obtained results can also be

projected onto promising low-dimensional structures for red-range

quantum wells emitters with based on
”
intermediate composition“

InGaN.
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