Вышедшие номера
Performance characteristics of p-channel FinFETs with varied Si-fin extension lengths for source and drain contacts
Liaw Yue-Gie1, Liao Wen-Shiang2,3, Wang Mu-Chun4, Chen Chii-Wen4, Li Deshi2, Gu Haoshuang3, Zou Xuecheng1
1Department of Electronic Science & Technology, Huazhong University of Science and Technology, Wuhan, P. R. China
2Faculty of School of Electronic Information, Wuhan University, Wuhan, P.R. China
3Faculty of Physics and Electronic Technology, Hubei University, Wuhan, P.R. China
4Department of Electronic Engineering, Ming Hsin University of Science and Technology, Hsinchu, Taiwan
Email: wsliaoumc@yahoo.com.tw, mucwang@must.edu.tw, estxczou@hust.edu.cт
Выставление онлайн: 19 ноября 2017 г.

The length of Source/Drain (S/D) extension (LSDE) of nano-node p-channel FinFETs (pFinFETs) on SOI wafer influencing the device performance is exposed, especially in drive current and gate/S/D leakage. In observation, the longer LSDE pFinFET provides a larger series resistance and degrades the drive current (IDS), but the isolation capability between the S/D contacts and the gate electrode is increased. The shorter LSDE plus the shorter channel length demonstrates a higher trans-conductance (Gm) contributing to a higher drive current. Moreover, the subthreshold swing (S.S.) at longer channel length and longer LSDE represents a higher value indicating the higher amount of the interface states which possibly deteriorate the channel mobility causing the lower drive current. DOI: 10.21883/FTP.2017.12.45190.8421
  1. B.G. Streetman, S.K. Banerjee. Solid State Electronic Devices, 7th edn ( Prentice Hall Press, New Jersey, USA, 2015)
  2. S.Y. Wu, C.Y. Lin et al. IEEE/IEDM, 224 (2013)
  3. C.T. Malheiro, A.S.N. Pereira et al. IEEE/ ICCDCS, 1 (2012)
  4. W.S. Liao, Y.G. Liaw et al. IEEE/ Eelectron Dev. Lett., 29 (7), 788 (2008)
  5. S. Cristoloveanu. Sol. St. Electron., 45 (8), 1403 (2001)
  6. F. Heitzmanna, O. Debickia et al. Sol. St. Electron., 125, 14 (2016)
  7. S. Wei, G. Zhang et al. Jpn. J. Appl. Phys., 55, 104201 (2016)
  8. W.S. Hwang, B.J. Cho et al. J. Vac. Sci. Techn. B: Microelectronics and Nanometer Structures, 24 (6), 2689 (2006)
  9. W.S. Liao, M.C. Wang et al. Appl. Phys. Lett., 65 (17), 2229 (2011)
  10. C.L. Lin, P.H. Hsiao et al. IEEE Trans. Electron. Dev., 60 (11), 3639 (2013)
  11. Y.B. Liao, M.H. Chiang et al. IEEE Trans. Electron. Dev., 61 (4), 963 (2014)
  12. N. Breil, C. Lavoie et al. Microelectronic Engin., 137, 79 (2015)
  13. Y.G. Liaw, W.S. Liao et al. Sol. St. Electron., 126, 46 (2016)
  14. S.J. Rhee, J.C. Lee. Microelectron. Reliab., 45 (7--8), 1051 (2005)
  15. R.I. Hegde, D.H. Triyoso et al. J. Appl. Phys., 101 (7), 074113 (2007)
  16. T. Chiarella, L. Witters et al. IEEE ESSCIRC, 84 (2009)
  17. R. Parihar, V. Narendar et al. IEEE ICDCCom., 1 (2014)
  18. P.H. Su, Y. Li. IEEE Trans. Semicond. Manufact., 29 (3), 209 (2016)
  19. T. Horiuchi, H. Mikoshiba et al. IEEE Electron Dev. Lett., 7 (6), 337 (1986)
  20. K.L. Chen, S. Saller et al. IEEE Trans. Electron Dev., 33 (3), 424 (1986)
  21. I. Polishchuk, Y.C. Yeo et al. IEEE IRPS, 425 (2001)
  22. A. Acovic, G. La Rosa et al. Microelectronics Reliab., 36 (7--8), 845 (1996)
  23. A. Ortiz-Condea, A. Sucre-Gonzaleza et al. Microelectron. Reliab., 69, 1 (2017)
  24. O.V. Naumova, M.A. Il'nitskivi et al. Semiconductors, 41 (1), 103 (2007)
  25. A.V. de Oliveira, P.G. Der Agopian et al. Sol. St. Electron., 123, 124 (2016)
  26. S.S. Rathod, A.K. Saxena et al. J. Appl. Phys., 109 (8), 084504 (2011).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.