Вышедшие номера
Piezoresistive and posistor effects in polymer-semiconductor and polymer-ferropiezoceramic composites
Mamedov Havar A.1, Kurbanov Mirza A.2, Bayramov Azad A.2, Tatardar Farida N.2, Sabikoglu Israfil3, Parali Levent4
1Azerbaijan Technical University, Baku, Azerbaijan
2Academy of Science of Azerbaijan, Institute of Physics, Baku, Azerbaijan
3Celal Bayar University, Faculty of Arts & Sciences, Departments of Physics, Manisa, Turkey
4Celal Bayar University, Department of Electronics and Automation, Turgutlu, Manisa, Turkey
Email: levent.parali@cbu.edu.tr
Поступила в редакцию: 4 февраля 2015 г.
Выставление онлайн: 19 апреля 2016 г.

In this study, piezoresistive and posistor effects in polymer-semiconductor and polymer-ferropiezoceramic composites have been investigated. The results show that composites based on crystallizable polymers, such as PVDF, HDPE, and PP dispersed by semiconductors and ferropiezoelectric fillers have piezoresistive and posistor properties, respectively. At low pressure, charge carriers tunneling through the located thin polymer among filler particles into the barrier define the conductivity of the composite. When pressure value is increased from 0 to 1 MPa, the thickness of the interlayer decreases and tunnel conductivity descends exponentially depending on barrier height. The piezoresistor sensitivity of a composite based on PVDF-70% vol+Si-30% vol is higher than a composite based on HDPE-70% vol+Ge-30% vol. Furthermore, the posistor properties of polymer composites dispersed by ferropiezoceramic are determined as the maximum resistance that varies significantly with temperature. Posistor effect in composites based on polymer+ferropiezoceramic is associated with the height of the barrier layer, which changes according to properties of filler, polymer, and dielectric permittivity of two-phase composites. The highest specific resistance related to HDPE-70% vol+BaTiO3-30% vol composite was observed at ~403 K.
  1. S. Choi, Z. Jiang. Sensors Actuators A: Phys., 128, 317 (2006)
  2. I.M. De Rosa, F. Sarasini. Polymer Testing 29, 749 (2010)
  3. P. Peng, S. Sezen, R. Rajamani, G. Erdman. Sensors Actuators A: Phys. 158, 10 (2010)
  4. R. Haj-Ali R, H. Zemer, R. El-Hajjar. J. Aboudi, Int. J. Solids and Struct., 51, 491 (2014)
  5. J.M.E. Lines, A.M. Glass (Clarendo Press-Oxford, London, 1977)
  6. I.S. Rez, Y.M. Poplavko. Radio I S. Moscow (1989) [in Russian]
  7. M.A. Kurbanov, M.G. Shakhtakhtinsky. Institute of Physics Azerbaijan National Academy of Sciences. Int. Conf., Baku, Azerbaijan, (2005)
  8. M.K. Kerimov, M.A. Kurbanov, A.A. Bayramov, A.I. Mamedov. Matrix Nanocomposites and Polymers with Analytical Methods/Book, 3. Book ed. by: John Cuppoletti (INTECH Open Access Publisher, 2011) p. 375
  9. M. Kalantari, J. Dargahi, J. Kovecses, M. Mardasi, S. Nouri, IEEE/ASME Trans. on Mechatronics, 17, 572 (2012)
  10. L.A. Bashkirov, N.Y. Shishkin, O.I. Kurbachev, O.A. Chebotar, I.M. Zharsky. Sensors and Actuators B. 55, 65 (1999)
  11. Z.G. Zhou, Z.L. Tang, Z.T. Zhang, W. Wlodarski. Sensors Actuators B: Chem., 77, 22 (2001)
  12. Murata Manufac. Co. Ltd., PTC Thermistor (POSISTOR) Application Manual (2014)
  13. B. Adhikari, S. Majumdar. Progr. Polymer Sci., 29, 699 (2004)
  14. M. Knite, V. Teteris, A. Kiploka, I. Klemenoks. Adv. Eng. Mater., 6, 742 (2004)
  15. J. Zavickis, M. Knite, K. Ozols, G. Malefan. Mater. Sci. Eng. C. 31, 472 (2011)
  16. V.V. Vasilyev, M.Yu. Tarnopol'skii. Composition Materials. Handbook. (Mashinostroenie, Moscow, 1990)
  17. M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs. Sensors Actuators A: Phys., 110 142 (2004)
  18. M. Kinite, V. Tupureina, A. Fuith, J. Zavickis, V. Teteris. Mater. Sci. Eng. C, 27 1125 (2007)
  19. N. Serra, T. Maeder, P. Ryser. Sensors Actuators A: Phys., 186, 198 (2012)
  20. M. Hussain, Y.H. Choa, K. Niihara. Compos. A: Appl. Sci. Manuf. 32, 1689 (2001)
  21. L.H. Wang, T.H. Ding, P. Wang. Compos. Sci. Technol., 68 3448 (2008)
  22. L.H. Wang, F.F. Ma, Q.S. Shi, H.H. Liu, X.T. Wang. Sensors Actuators A: Phys., 165, 207 (2011)
  23. L.H. Wang, Y.Y. Han. Compos. A: Appl. Sci. Manuf. 47, 63 (2013)
  24. L. Chen, G.H. Chen, L. Lu. Adv. Funct. Mater. 17, 898 (2007)
  25. M.K. Kerimov, M.A. Kurbanov, I.S. Sultanahmedova, I.A. Faradzhzade, F.N. Tatardar, H.S. Aliyev, F.F. Yahyaev, U.V. Yusifova. Semiconductors 44, 904 (2010)
  26. A.M. Slipenyuk, M.D. Glinkchuk, V.V. Laguta, I.P. Bykov, A.G. Bilous, O.I. Yunov. Ferroelectrics 288, 243 (2003)
  27. L. Chun Hung, L. Yuh Yih, T. Tseung. J. App. Phys. 74, 3383 (1993)
  28. M.E. Hossain, S.Y. Liu. Acta Mech., 225, 197 (2014)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.