Вышедшие номера
A new simulation model for inhomogeneous Au/n-GaN structure
Kavasoglu Nese1, Kavasoglu Abdulkadir Sertap1, Metin Bengul1
1Mugla Sitki Kocman University, Faculty of Sciences, Department of Physics, Photovoltaic Material and Device Laboratory, Kotekli, Mugla, Turkey
Email: knesese@gmail.com
Поступила в редакцию: 10 апреля 2015 г.
Выставление онлайн: 19 апреля 2016 г.

The larger the device area, the more difficult to carry on homogeneity during the fabrication and following treatments. Structural inhomogeneity may indicate themselves in variations in local electronic device parameters. Electrical current through the potential barriers is exponentially sensitive to the local device parameters and its fluctuations in the Schottky devices. A new simulation program is developed to describe a relation between multiple, random barrier heights and current-voltage characteristics of the Schottky device. We model the barrier height inhomogeneity in terms of random microcells connected in parallel, which have different barrier height values. Analyzing the integral of the simulated light current-voltage curves show that fluctuations of the local barrier height result in a degradation of the open circuit voltage, fill factor and in consequence, of the over all power conversation efficiency. The implementation described here is quite general and can be used to simulate any device parameter fluctuations in the Schottky devices.
  1. L.S. Yu, Q.Z. Liu, Q.J. Xing, D.J. Qiao, S.S. Lau, J. Redwing. J. Appl. Phys., 84, 2099-2104 (1998)
  2. B. Akkal, Z. Benamara, H. Abid, A. Talbi, B. Gruzza. Mater. Chem. Phys., 85, 27 (2004)
  3. C. Touzi, A. Rebey, B. Eljani. Microelectron. J., 33, 961 (2002)
  4. R.T. Tung. Phys. Rev. B 45, (23), 13 509 (1992)
  5. M. Biber, O. Gullu, S. Forment, R.L. Van Meirhaeghe, A. Turut. Semicond. Sci. Tech., 21, 1 (2006)
  6. I.M. Afandiyeva, S. Demirezen, S. Alti ndal. J. Alloys Comp., 552, 423 (2013)
  7. K.S. Kima, R.K. Gupta, G.S. Chung, F. Yakuphanoglu. J. Alloys Comp., 509, 10 007 (2011)
  8. O. Vural , Y. Safak, S. Altindal , A. Turut. Curr. Appl. Phys., 10, 761 (2010)
  9. S. Altindal, H. Kanbur, A. Tataroglu, M.M. Bulbul. Physica B 399 146 (2007)
  10. K. Ejderha, N. Yi ldi ri m, B. Abay, A. Turut. J. Alloys. Comp., 484, 870 (2009)
  11. B. Kinaci, S.S. Cetin, A. Bengi, S. Ozcelik. Mater. Sci. Semicond. Proc. 15, 531 (2012)
  12. O. Pakma, N. Serin, T. Serin, S. Alti ndal. Physica B, 406, 771 (2011)
  13. T.G.G. Maffeis, M.C. Simmonds, S.A. Clark, F. Peiro, P. Haines, P.J. Parbrook. J. Appl. Phys. 92, 3179 (2002)
  14. M. Bhaskar Reddy, A. Ashok Kumar, V. Janardhanam, V. Rajagopal Reddy, P. Narasimha Reddy. Current Appl. Phys., 9, 972 (2009)
  15. A.D.D. Dwivedi, A.K. Singh, R. Prakash, P. Chakrabarti. Current. Appl. Phys., 10, 900 (2010)
  16. M. Gokcena, T. Tuncc, S. Altindal, I. Uslu. Current Appl. Phys. 12, 525 (2012)
  17. S. Demirezen, S. Altindal. Current Appl. Phys., 10, 1188 (2010)
  18. E. Dobrocka, J. Osvald. J. Appl. Phys. Lett., 65, 575 (1994)
  19. G.T. Koishiyev, J.R. Sites. Sol. Energy Mater. Sol. C, 93, 350 (2009)
  20. U. Malm, M. Edoff. Sol. Energy Mater. Sol. C, 93, 1066 (2009)
  21. S.M. Sze. Physics of Semiconductor Devices. 2nd edn. (New Jersey, 1981)
  22. S.N. Das, A.K. Pal. Vacuum, 81, 834 (2007)
  23. U. Malm, M. Edoff. Sol. Energy Mater. Sol. C, 93, 1066 (2009)
  24. S.C. Riha, B.A. Parkinson, A.L. Prieto. J. Amer. Chem. Soc., 133, 15 272 (2011)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.