"Физика и техника полупроводников"
Вышедшие номера
Edge effects in propagation of terahertz radiation in subwavelength periodic structures
Gelmont B.1, Parthasarathy R.1, Globus T.1
1Department of Electrical & Computer Engineering, University of Virginia, Charlottesville, VA
Поступила в редакцию: 6 февраля 2008 г.
Выставление онлайн: 20 июля 2008 г.

Improving detection sensitivity of biological molecules with low absorption characteristics in the terahertz gap still remains an important issue in terahertz vibrational resonance spectroscopy. One possible way to increase coupling of incident terahertz radiation to molecules is to exploit local enhancement of electromagnetic field in periodic slot arrays. In this work, we show that periodic arrays of rectangular slots with subwavelength width provide for local electromagnetic field enhancements due to edge effects in our low frequency range of interest, 10-25 cm-1. Periodic structures of Au, doped Si and InSb were studied. The half power enhancement width is ~500 nm and less around the slot edges in all cases, thereby possibly bringing terahertz sensing to the nanoscale. InSb is confirmed to offer the highest results with the local power enhancements of the order of 1100 at frequency 14 cm-1. InSb and Si have large skin depths in our frequency range of interest and so the analysis of their structures was done through the Fourier expansion method of field diffracted from gratings. Surface impedance boundary conditions were employed to model the Au structure. The applications possibly include development of novel biosensors, and monitoring biophysical processes such as DNA denaturation. PACS: 41.20.Jb, 78.68.+m, 78.70.Gq,
  1. T. Globus, D. Woolard, M. Bykhovskaia, B. Gelmont, L. Werbos, A. Samuels. Int. J. of High Speed Electron. Syst., 13, 903 (2003)
  2. T. Globus, D. Woolard, T.W. Crowe, T. Khromova, B. Gelmont, J. Hesler. J. Phys. D: Appl. Phys., 39, 3405 (2006)
  3. A. Bykhovski, T. Globus, T. Khromova, B. Gelmont, D. Woolard. Proc. SPIE, 6212, 62120H (2006)
  4. M.E. McDonald, A. Alexanian, R.A. York, Z. Popovic, E.N Grossman. IEEE Trans. On Microwave Theory and Techniques, 48, 712 (2000)
  5. Electromagnetic Theory of Gratings, ed. by R. Petit (Springer-Verlag, Berlin Heidelberg, 1980)
  6. P. Sheng, R.S. Stepleman, P.N. Sanda. Phys. Rev. B, 26, 2907 (1982)
  7. H.E. Went, A.P. Hibbins, J.R. Sambles, C.R. Lawrence, A.P. Crick. Appl. Phys. Lett., 77, 2789 (2000)
  8. Q. Cao, P. Lalanne. Phys. Rev. Lett., 88, 057 403 (2002)
  9. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolff. Nature, 391, 667 (1998)
  10. H.F. Ghaemi, T. Thio, D.E. Grupp, T.W. Ebbesen, H.J. Lezec. Phys. Rev. B, 58, 6779 (1998)
  11. T. Thio, H.F. Ghaemi, H.J. Lezec, P.A. Wolff, T.W. Ebbesen. J. Opt. Soc. Amer. B, 16, 1743 (1999)
  12. E. Popov, M. Neviere, S. Enoch, R. Reinisch. Phys. Rev. B, 62, 16 100 (2000)
  13. L. Martin-Moreno, F.J. Garcia-Vidal, H.J. Lezec, K.M. Pellerin, T. Thio, J.B. Pendry, T.W. Ebbesen. Phys. Rev. Lett., 86, 1114 (2001)
  14. S.A. Darmanyan, A.V. Zayats. Phys. Rev. B, 67, 035 424 (2003)
  15. S.H. Chang, S.K. Gray. Opt. Express, 13, 3150 (2005)
  16. H. Cao, A. Nahata. Opt. Express, 12, 1004 (2004)
  17. D. Qu, D. Grischkowsky, W. Zhang. Opt. Lett., 29, 896 (2004)
  18. J. Gomez Rivas, C. Schotsch, P. Haring Bolivar, H. Kurz. Phys. Rev. B, 68, 201 306(R) (2003)
  19. J. Gomez Rivas, C. Janke, P. Haring Bolivar, H. Kurz. Opt. Express, 13, 847 (2005)
  20. H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988) [Springer Tracts in Modern Physics, vol. 111, ch. 2,4,5]
  21. E. Popov, S. Enoch, G. Tayeb, M. Neviere, B. Gralak, N. Bonod. Appl. Opt., 43, 999 (2004)
  22. J.W. Lee, M.A. Seo, D.J. Park, S.C. Jeoung, Q.H. Park, Ch. Lienau, D.S. Kim. Opt. Express, 14, 12 638 (2006)
  23. J.A. Porto, F.J. Garcia-Vidal, J.B. Pendry. Phys. Rev. Lett., 83, 2845 (1999)
  24. F.J. Garcia-Vidal, L. Martin-Moreno. Phys. Rev. B, 66, 155 412 (2002)
  25. G.B. Arfken, H.J. Weber. Mathematical Methods for Physicists, 4th ed. (Academic Press, 1995) ch. 14, p. 836
  26. A. Wirgin, T. Lopez-Rios. Opt. Commun., 48, 416 (1984)
  27. E. Litwin-Staszewska, W. Szymanska, P. Piotrzkowski. Phys. Status Solidi B, 106, 551 (1981)
  28. S.S. Li, W.R. Thurber. Sol. St. Electron, 20, 609 (1977)
  29. A. Heltzel, S. Theppakuttai, S.C. Chen, J.R. Howell. Nanotechnology, 19, 025 305 (2008)
  30. J.D. Jackson. Classical Electrodynamics, 2nd ed. (John Wiley \& Sons Inc., 1975) ch. 2, p. 77
  31. R. Parthasarathy, T. Globus, T. Khromova, N. Swami, D. Woolard. Appl. Phys. Lett., 87, 113 901 (2005)
  32. N.S. Swami, C.F. Chou, R. Terberueggen. Langmuir, 21, 1937 (2005)
  33. R. Parthasarathy, A. Bykhovski, B. Gelmont, T. Globus, N. Swami, D. Woolard. Phys. Rev. Lett., 98, 153 906 (2007)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.