Вышедшие номера
Ultra-low density InAs quantum dots
Dubrovskii V.G., Cirlin G.E., Brunkov P.A., Perimetti U.1, Akopyan N.1
1Quantum Transport, Kavli Institute of Nanoscience, Delft University of Technology,CJ Delft, The Netherlands
Поступила в редакцию: 18 февраля 2013 г.
Выставление онлайн: 19 сентября 2013 г.

We show that InAs quantum dots (QDs) can be grown by molecular beam epitaxy (MBE) with an ultralow density of sin107 cm-2 without any preliminary or post-growth surface treatment. The strain-induced QD formation proceeds via the standard Stranski-Krastanow mechanism, where the InAs coverage is decreased to 1.3-1.5 monolayers (MLs). By using off-cut GaAs(100) substrates, we facilitate the island nucleation in this subcritical coverage range without any growth interruption. The QD density dependences on the InAs coverage are studied by photoluminescence, atomic force microscopy, transmission electron microscopy, and are well reproduced by the universal double exponential shapes. This method enables the fabrication of InAs QDs with controllable density in the range 107-108 cm-2, exhibiting bright photoluminescence.
  1. Single Semiconductor Quantum Dots, ed. by P. Michler (Springer, Heidelberg, 2009)
  2. L. Goldstein, F. Glas, J.Y. Marzin, M.N. Charasse, G. Le Roux. Appl. Phys. Lett., 47, 1099 (1985)
  3. V.A. Shchukin, N.N. Ledentsov, D. Bimberg. Epitaxy of Nanostructures (Springer Verlag, N.Y., 2003)
  4. J.S. Kim, N. Koguchi. Appl. Phys. Lett., 85, 5893 (2004)
  5. B.L. Liang, Zh.M. Wang, J.H. Lee, K. Sablon, Yu.I. Mazur, G.J. Salamo. Appl. Phys. Lett., 89, 043 113 (2006)
  6. P. Jin et al. Nanotechnology, 16, 2775 (2005)
  7. A. Huggenberger, S. Heckelmann, C. Schneider, S. Hofling, S. Reitzenstein, L. Worschech, M. Kamp, A. Forchel. Appl. Phys. Lett., 98, 131 104 (2011)
  8. E. Stock, T. Warming, I. Ostapenko, S. Rodt, A. Schliwa, J.A. Tofflinger, A. Lochmann, A.I. Toropov, S.A. Moshchenko, D.V. Dmitriev, V.A. Haisler, D. Bimberg. Appl. Phys. Lett., 100, 093 111 (2012)
  9. S. Reitzenstein, A. Forchel. J. Phys. D: Appl. Phys., 43, 033 001 (2010)
  10. V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov. Semiconductors, 43, 1539 (2009)
  11. F. Zhan, S.S. Huang, Z.C. Niu, H.Q. Ni, Y.H. Xiong, Z.D. Fang, H.Y. Zhou, Y. Luo. J. Nanosci. Nanotechnology, 9, 844 (2009)
  12. A. Urbanczyk, R. Notzel. J. Cryst. Growth, 341, 24 (2012)
  13. I. Mukhametzhanov, Z. Wei, R. Heitz, A. Madhukar. Appl. Phys. Lett., 75, 85 (1999)
  14. D. Leonard, K. Pond, P.M. Petroff. Phys. Rev. B, 50, 11 687 (1994)
  15. A. Polimeni, A. Patane, M. Cappizi, F. Martelli, L. Nazi, G. Salvani. Phys. Rev. B, 53, R4213 (1996)
  16. A. Patane, M.G. Alessi, F. Intonti, A. Polimeni, M. Capizzi, F. Martelli, L. Nasi, L. Lazzarini, G. Salviati, A. Bosacchi, S. Franchi. J. Appl. Phys., 83, 5529 (1998)
  17. V.G. Dubrovskii, G.E. Cirlin, Yu.G. Musikhin, Yu.B. Samsonenko, A.A. Tonkikh, N.K. Polyakov, V.A. Egorov, A.F. Tsatsul'nikov, N.A. Krizhanovskaya, V.M. Ustinov, P. Werner. J. Cryst. Growth, 267, 47 (2004)
  18. V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov. Phys. Status Solidi B, 241, R42 (2004)
  19. A.V. Osipov, F. Schmitt, S.A. Kukushkin, P. Hess. Appl. Surf. Sci., 188, 156 (2002)
  20. V.G. Dubrovskii, G.E. Cirlin, V.M. Ustinov. Phys. Rev. B, 68, 075 409 (2003)
  21. U. Perinetti, N. Akopian, Yu.B. Samsonenko, A.D. Bouravleuv, G.E. Cirlin, V. Zwiller. Appl. Phys. Lett., 94, 163 114 (2009)
  22. V.G. Dubrovskii, N.V. Sibirev, X. Zhang, R.A. Suris. Cryst. Growth Des., 10, 3949 (2010)
  23. X. Zhang, V.G. Dubrovskii, N.V. Sibirev, X. Ren. Cryst. Growth Des., 11, 5441 (2011)
  24. V.G. Dubrovskii, V. Consonni, A. Trampert, L. Geelhaar, H. Riechert. Phys. Rev. B, 85, 165 317 (2012)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.