"Физика и техника полупроводников"
Вышедшие номера
A comparative study on the electronic and optical properties of Sb2Se3 thin film
Kamruzzaman M.1, Liu Chaoping2, Ul Islam A.K.M. Farid3, Zapien J.A.1
1Department of Physics and Materials Science and Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, P.R. China
2Department of Physics and Materials Science, City University of Hong Kong, Hong Kong SAR, P.R. China
3Department of Computer Science and Engineering, Begum Rokeya University, Rangpur, Rangpu, Bangladesh E-mail:
Email: kzaman.phy17@gmail.com, liuchaoping7281@hotmai l.com, farid_ru@yahoo.com, apjazs@cityu.edu.hk
Выставление онлайн: 19 ноября 2017 г.

The thin film of Sb2Se3 was deposited by thermal evaporation method and the film was annealed in N2 flow in a three zone furnace at a temperature of 290oC for 30 min. The structural properties were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray diffraction (XRD) and Raman spectroscopy, respectively. It is seen that the as-deposited film is amorphous and the annealed film is polycrystalline in nature. The surface of Sb2Se3 film is oxidized with a thickness of 1.15 nm investigated by X-ray photolecetron spectroscopy (XPS) measurement. Spectroscopic ellipsometry (SE) and UV-vis spectroscopy measurements were carried out to study the optical properties of Sb2Se3 film. In addition, the first principles calculations were applied to study the electronic and optical properties of Sb2Se3. From the theoretical calculation it is seen that Sb2Se3 is intrinsically an indirect band gap semiconductor. Importantly, the experimental band gap is in good agreement with the theoretical band gap. Furthermore, the experimental values of n,k,varepsilon1, and varepsilon2 are much closer to the theoretical results. However, the obtained large dielectric constants and refractive index values suggest that exciton binding energy in Sb2Se3 should be relatively small and an antireflective coating is recommended to enhance the light absorption of Sb2Se3 for thin film solar cells application. DOI: 10.21883/FTP.2017.12.45184.8396
  1. Y. Zhou, M. Leng, Z. Xia, J. Zhong, H. Song, X. Liu, B. Yang, J. Zhang, J. Chen, K. Zhou, J. Han, Y. Cheng, J. Tang. Adv. Energy Mater., 4, 1301846 (2014)
  2. X. Liu, J. Chen, M. Luo, M. Leng, Z. Xia, Y. Zhou, S. Qin, D.J. Xue, L. Lv, H. Huang, D. Niu, J. Tang. ACS Appl. Mater. Interfaces, 6, 10687 (2014)
  3. E. Donges, Z. Anorg. Allg. Chem., 263, 280 (1950)
  4. J.J. Liu, J.M. Liu, C.Q. Liu, W.Q. Lu, S.R. Liu, W.C. Su. Int. Geol. Rev., 41, 1042 (1999)
  5. J. Black, E.M. Conwell, L. Seigle, C.W. Spencer. J. Phys. Chem. Sol., 2, 240 (1957)
  6. F.D. Rosi, B. Abeles, R.V. Jensen. J. Phys. Chem. Sol., 10, 191 (1959)
  7. S.G. Jeffrey, E.S. Toberer. Nature Mater., 7, 105 (2008)
  8. P.M. Fourspring, D.M. DePoy, T.D. Rahmlow, J.E. Lazo Wasemand, E.J. Gratrix. Appl. Optic, 45, 1356 (2006)
  9. B. Zhou, J. Zhu. Nanotechnology, 20, 85604 (2009)
  10. J.A. Chang, J.H. Rhee, S.H. Im, Y.H. Lee, H.J. Kim, S.I. Seok, M.K. Nazeeruddin, M. Gratzel. Nano Lett., 10, 2609 (2010)
  11. P. Arun, A.G. Vedeshwar, N.C. Mehra. J. Phys. D: Appl. Phys., 32, 183 (1999)
  12. Y. Zhou, L. Wang, S. Chen, S. Qin, X. Liu, J. Chen, D.J. Xue, M. Luo, Y. Cao, Y. Cheng, E.H. Sargent, J. Tang. Nature Photonics, 9, 409 (2015)
  13. E. v Cernov skova, R. Todorov, Z. v Cernov sek, J. Holubova, L. Benev s. J. Thermal Analysis and Calorimetry, 118, 105 (2014)
  14. D. Dimitov, D. Tzocheva, D. Kovacheva. Thin Sol. Films, 323, 79 (1998)
  15. X. Liu, C. Chen, L. Wang, J. Zhong, M. Luo, J. Chen, D.J. Xue, D. Li, Y. Zhou, J. Tang. Prog. Photovolt.: Res. Appl., 23, 1828 (2015)
  16. M. Luo, M. Leng, X. Liu, J. Chen, C. Chen, S. Qin, J. Tang. Appl. Phys. Lett., 104, 173904 (2014)
  17. W. Wang, M.T. Winkler, O. Gunawan, T. Gokmen, T.K. Todorov, Y. Zhu, D.B. Mitzi. Adv. Energy Mater., 4, 1301465 (2014)
  18. NREL efficiency chart
  19. M. Gratzel. Nature Mater., 13, 838 (2014)
  20. M.A. Green, A. Ho-Baillie, H.J. Snaith. Nature Photonics, 8, 506 (2014)
  21. C.E. Patrick, F. Giustino. Adv. Funct. Mater., 21, 4663 (2011)
  22. M. Wuttig, N. Yamada. Nature Mater., 6, 824 (2007)
  23. H. Zhang, C.X. Liu, X.L. Qi, X. Dai, Z. Fang, S.C. Zhang. Nature Phys., 5, 438 (2009)
  24. G.J. Snyder, E.S. Toberer. Nature Mater., 7, 105 (2008)
  25. N.W. Tideswell, F.H. Kruse, J.D. McCullough. Acta Crystallogr., 10, 99 (1957)
  26. R.K. Vadapoo, S. Krishnan, H. Yilmaz, C. Marin. Phys. Status Solidi B, 248, 700 (2011)
  27. W. Procarione, C. Wood. Phys. Status Solidi, 42, 871 (1970)
  28. F. Kosek, J. Tulka, L. Sv tourac. Czech. J. Phys. B, 28, 325 (1978)
  29. L.R. Gilbert, B. Van Pelt, C. Wood. J. Phys. Chem. Sol., 35, 1629 (1974)
  30. K.A. Chandrasekharan, A.G. Kunjomana. Turk. J. Phys., 33, 1 (2009)
  31. X. Zheng, Y. Xie, L. Zhu, X. Jiang, Y. Jia, W. Song, Y. Sun. Inorg. Chem., 41, 455 (2002)
  32. A.P. Torane, K.Y. Rajpure, C.H. Bhosale. Mater. Chem. Phys., 61, 219 (1999)
  33. K.Y. Rajpure, C.D. Lokhande, C.H. Bhosale. Mater. Res. Bulleten, 34, 1079 (1999)
  34. K.Y. Rajpure, C.D. Lokhande, C.H. Bhosale. Thin Sol. Films, 311, 114 (1997)
  35. Y. Rodriguez-Lazcano, Y. Pena, M.T.S. Nair, P.K. Nair. Thin Sol. Films, 493, 77 (2005)
  36. H.T. El-Shair, A.M. Ibrahim, E. Abd El-Wahabb, M.A. Afify, F. Abd El-Salam. Vacuum, 42, 911 (1991)
  37. E.A. El-Sayad, A.M. Moustafa, S.Y. Marzouk. Physica B (Amsterdam), 404, 1119 (2009)
  38. S. Messina, M.T.S. Nair, P.K. Nair. J. Electrochem. Soc., 156, H327 (2009)
  39. G.Y. Chen, B. Dneg, G.B. Cai, T.K. Zhang, W.F. Dong, W.X. Zhang, A.W. Xu. J. Phys. Chem. C, 112, 672 (2008)
  40. H. Koc, Amirullah M. Mamedov, E. Deligoz, H. Ozisik. Sol. St. Sci., 14, 1211 (2012)
  41. Z. Li, H. Zhu, Y. Guo, X. Niu, X. Chen, C. Zhang, W. Zhang, X. Liang, D. Zhou, J. Chen, Y. Mai. Appl. Phys. Express, 9, 052302 (2016)
  42. Y.C Choi, T.N. Mandal, W.S. Yang, Y.H. Lee, S.H. Im, J.H. Noh, S.I. Seok. Angewandte Chemie, 126, 1353 (2014)
  43. T.T. Ngo, S. Chavhan, I. Kosta, O. Miguel, H.J. Grande, R. Tena-Zaera. ACS Appl. Mater. Interfaces, 6, 2836 (2014)
  44. D.E. Lee, J.Y. Wu, W.Z. Lin, M.W. Leez. J. Electrochem. Soc., 161, H880 (2014)
  45. S.J. Clark et al. First principles methods using CASTEP Zeitschriftfur Kristallographie, 220, 567 (2005)
  46. A.M. Moustafa, E.A. El-Sayed. Egypt. J. Solid., 32, 71 (2009)
  47. M. Masoudi, M. Hashim, H.M. Kamari, M.S. Salit. Modern Appl. Sci., 6, 6 (2012)
  48. Y.X. Zhang, G.H. Li, B. Zhang, L.D. Zhang. Mater. Lett., 58, 2279 (2004)
  49. M. Malligavathya, R.T. Ananth Kumar, Chandasree Das, S. Asokan, D. Pathinettam Padiyan. J. Non-Cryst. Sol., 429, 93 (2015)
  50. B.S. Naidu, M. Pandey, V. Sudarsan, R.K. Vatsa, R. Tewari. Chem. Phys. Lett., 474, 180 (2009)
  51. A.M. Salem, M.S. Selim. J. Phys. D: Appl. Phys., 34, 12 (2001)
  52. M. Kamruzzaman, L. Chaoping, F. Yishu, A.K.M. Faridulislam, J.A. Zapien. RSC Advances, 6, 99282 (2016)
  53. A. Jain, G. Hautier, C. Moore, S.P. Ong, C.C. Fischer, T. Mueller, K.A. Persson, G. Ceder. Computational Mater. Sci., 50, 2295 (2011)
  54. S. Minoura, K. Kodera, T. Maekawa, K. Miyazaki, S. Niki, H. Fujiwara. J. Appl. Phys., 113, 63505 (2013).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.