Effect of Different Loss Mechanisms in SiGeSn Based Mid-infrared Laser
Chakraborty Vedatrayee1, Mukhopadhyay Bratati1, Basu P.K.2
1Institute of Radio Physics and Electronics, University of Calcutta, Kolkata, India
2Electronics and Electrical Communication Engg. Dept. IIT Kharagpur, West Bengal, India
Поступила в редакцию: 22 апреля 2014 г.
Выставление онлайн: 20 мая 2015 г.
We have analyzed the mid-infrared SiGeSn based Barrier-Well-Barrier Heterostructure and calculated the transparency carrier density and corresponding current density for the structure. The effects of different loss mechanisms like free carrier absorption, spontaneous recombination and Auger recombination processes on the transparency current density have been examined. It is shown that, the transparency current density increases significantly with the injected carrier density. Different scattering processes like acoustic phonon scattering and intervalley optical phonon scattering are taken into consideration for this analysis of free carrier absorption mechanisms.
- P.K. Basu. Theory of Optical Processes in Semiconductors: Bulk and Microstructures (Oxford Univ. Press, Oxford, U.K., 2003)
- G.T. Reed, A.P. Knights. Silicon Photonics: An Introduction (Wiley Interscience, N.Y., 2004)
- M.J. Deen, P.K. Basu. Silicon Photonics : Fundamentals and Devices (Wiley, Chichester, U.K., 2012)
- N. Izhaky, M.T. Morse, S. Koehl, O. Cohen, D. Rubin, A. Barkai, G. Sarid, R. Cohen, M.J. Paniccia. IEEE Select. Top. Quant. Electron., 12, 1688 (2006)
- R.A. Soref, L. Friedman. Superlat. Microstruct., 14, 189 (1993)
- R.A. Soref, C.H. Perry. J. Appl. Phys., 69, 539 (1991)
- J. Taraci, J. Tolle, J. Kouvetakis, M.R. McCartney, D.J. Smith, J. Menendez, M.A. Santana. Appl. Phys. Lett., 78, 3607 (2001)
- M. Bauer, C. Ritter, P.A. Crozier, J. Ren, J. Menendez, G. Wolf, J. Kouvetakis. Appl. Phys. Lett., 83, 2163 (2003)
- J. Menendez, J. Kouvetakis. Appl. Phys. Lett., 85, 1175 (2004)
- P. Moontragoon, Z. Ikonic, P. Harrison. Semicond. Sci. Technol., 22, 742 (2007)
- M. Virgilio, G. Grosso. J. Phys. Condens. Matter, 18, 1021 (2006)
- G. He, H.A. Atwater. Phys. Rev. Lett., 79, 1937 (1997)
- H.P.L. de Guevara, A.G. Rodriguez, H. Navarro-Contreras, M.A. Vidal. Appl. Phys. Lett., 84, 4532 (2004)
- R. Ragan, H.A. Atwater. Appl. Phys. Lett., 77, 3418 (2000)
- P. Moontragoon, R.A. Soref, Z. Ikonic. J. Appl. Phys., 112, 073 106 (2012)
- V.R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, J. Menendez. AIP Conf. Proc., 1199, 39 (2009)
- V.R. D'Costa, Y.-Y. Fang, J. Tolle, J. Kouvetakis, J. Menendez. Thin Sol. Films, 518, 2531 (2010)
- J. Kouvetakis, J. Tolle, J. Mathews, R. Roucka, J. Menendez. ECS Trans., 33, 615 (2010)
- S. Bagchi, C.D. Poweleit, R.T. Beeler, J. Kouvetakis, J. Menendez. Phys. Rev. B, 84, 193 201 (2011)
- N. Tansu, L.J. Mawst. IEEE J. Quant. Electron., 39, 1205 (2003)
- I. Vurgaftman, J.R. Meyer, N. Tansu, L.J. Mawst. Appl. Phys. Lett., 83, 2742 (2003)
- I. Vurgaftman, J.R. Meyer, N. Tansu, L.J. Mawst. J. Appl. Phys., 96, 4653 (2004)
- W.W. Bewley, C.L. Canedy, C.S. Kim, M. Kim, C.D. Merritt, J. Abell, I. Vurgaftman, J.R. Meyer. Opt. Express, 20, 3235 (2012)
- G. Chang, S.W. Chang, S.L. Chuang. Opt. Express, 17, 11 246 (2009)
- W.W. Chow. Appl. Phys. Lett., 100, 191 113 (2012)
- F.M. Armando, S. Fahy. J. Appl. Phys., 109, 113 703 (2011)
- G. Sun, R.A. Soref, H.H. Cheng. J. Appl. Phys., 108, 033 107 (2010)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.