"Физика и техника полупроводников"
Вышедшие номера
The adsorption effect of C6H5 on density of states for double wall carbon nanotubes by tight binding model
Fathalian A.1,2,3
1Department of Physics, Razi University, Kermanshah, Iran
2Nano Science and Technology Research Center, Razi University, Kermanshah, Iran
3Department of Nano Science, Institute for Studies in Theoretical Physics and Mathematics, Tehran,Iran
Поступила в редакцию: 14 ноября 2011 г.
Выставление онлайн: 20 мая 2012 г.

A theoretical approach based on a tight-binding model is developed to study the effects of the adsorption of finite concentrations of C6H5 gas molecules on double-walled carbon nanotube (DWCNT) electronic properties. To obtain proper hopping integrals and random on-site energies for the case of one molecule adsorption, the local density of states for various hopping integrals and random on-site energies are calculated. Since C6H5 molecule is a donor with respect to the carbon nanotubes and their states should appear near the conduction band of the system, effects of various hopping integral deviations and on-site energies for one molecule adsorption are considered to find proper hopping and on-site energies consistent with expected n-type semiconductor. We found that adsorption of C6H5 gas molecules could lead to a (8.0)@(20.0) DWCNT n-type semiconductor. The width of impurity adsorbed gas states in the density of states could be controlled by adsorbed gas concentration.
  1. S. Iijima. Nature, 354, 56 (1991)
  2. S. Iijima, T. Ichihashi. Nature, 363, 603 (1993)
  3. D.S. Bethune et al. Nature, 363, 605 (1993)
  4. J.P. Lu, J. Han. Int. J. High Electron. Syst., 9, 101 (1998)
  5. P.G. Collins, K. Bradley, M. Ishigami, Z. Zettl. Science, 287, 1801 (2000)
  6. J. Kong et al. Science, 287, 622 (2000)
  7. G.U. Sumanasekera, B.K. Pradhan, H.E. Romero, K.W. Adu, P.C. Eklund. Phys. Rev. Lett., 89, 166 801 (2002)
  8. A. Star, T.R. Han, J.C. Gabriel, K. Bradley, G. Gruener, Nano Lett., 3, 1421 (2003)
  9. E.S. Snow, F.K. Perkine, E.J. Houser, S.C. Badescu, T.L. Reinecke. Science, 307, 1942 (2005)
  10. H. Park, J. Zhao, J.P. Lu. Nano Lett., 6, 916 (2006)
  11. R.J. Chen, Y. Zhang, D. Wang, H.J. Dai. J. Am. Chem. Soc., 123, 3838 (2001)
  12. X. Wang, Y. Liu, W. Qiu, D. Zhu. J. Mater. Chem., 12, 1636 (2002)
  13. M. Penza, F. Antolini, M.V. Antisari. Sensors Actuators B, 100, 47 (2004)
  14. H. Gao, Y. Kong. Ann. Rev. Mater. Res., 34, 123 (2004)
  15. S. Chopra, K. McGuire, N. Gothard, M.A. Rao, A. Pham. Appl. Phys. Lett., 83, 2280 (2003)
  16. M.J. Moghaddam, S. Taylor, M. Gao, S. Huang, L. Dai, M.J. McCall. Nano Lett., 4, 89 (2004)
  17. S.H. Jhi, S.G. Louie, M.L. Cohen. Phys. Rev. Lett., 85, 1710 (2000)
  18. R. Moradian. J. Phys.: Condens. Matter., 8, 507 (2006)
  19. R. Moradian, A. Fathalian. Nanotechnology, 17, 1835 (2006)
  20. A. Fathalian, S.X. Dou, R. Moradian. Physica B, 405, 1125 (2010)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.