Вышедшие номера
Heat induced nanoforms of Zinc oxide quantum dots and their characterization
Dey Anindita1, Basu Ruma2, Das Sukhen1, Nandy Papiya1
1Physics Department, Jadavpur University, Kolkata, India
2Physics department, Jogamaya Devi College, Kolkata, India
Поступила в редакцию: 21 марта 2011 г.
Выставление онлайн: 20 января 2012 г.

In our studies we observed heat induced phase transitions of Zinc oxide quantum dots at 60, 200, 360 and 400oC, where all the transitions were irreversible except the transition at 60oC which was a reversible one. The phase transition at 60oC indicated a heat induced conformational change which was supported here by studying polarizing micrographs of ZnO quantum dots thin film. The X-ray diffraction studies of the sample fired at different temperatures as indicated by the thermal analysis were performed in order to understand the changes occurred due to transitions. The study also indicated a new and simple approach to develop ZnO nanorods by just thermal decomposition of the ZnO quantum dots firing in furnace at 200oC with 2 h soaking. In order to have a proper insight of the structural changes we performed scanning electron microscopy. Optical characterization was done by UV-vis and fluorescence spectrophotometer.
  1. U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H.J. Morkoc. J. Appl. Phys., 98, 041 301 (2005)
  2. Y. Lin, D. Wang, Q. Zhao, M. Yang, Q. Zhang. J. Phys. Chem. B, 108, 3202 (2004)
  3. R.F. Service. Science, 276, 895 (1997)
  4. K.H. Guenther. Appl. Optics, 23, 3612 (1984)
  5. F.C.M. Van De Pol. Ceramic Bulletin, 69, 1959 (1990)
  6. K. Nashimoto, S. Nakamura, H. Mariyama. Jpn. J. Appl. Phys., 43, 5091 (1995)
  7. T. Nagata, T. Shimura, A. Asida, N. Fujimura, T.J. Ito. Cryst. Growth, 237, 537 (2002)
  8. Y.J. Lin, Y.W. Kwon, Y.W. Heo, J. Zhou, S. Luo, P.H. Holloway, E. Douglas, D.P. Norton, Z. Park, S. Li. Semicond. Sci. Technol., 20 (8), 720 (2005)
  9. Z. Guo, S. Wei, B. Shedd, R. Scaffaro, T. Pereira, H. Thomas. J. Mater. Chem., 17, 806 (2007)
  10. E. Hosono, S. Fujihura, I. Honma, H.H. Zhou. Adv. Mater., 17, 2091 (2005)
  11. M. Yang, D. Wang, L. Peng, T. Xie, Y. Zhao. Nanotechnology, 17, 4567 (2006)
  12. N. Kumar, A. Dofiman, J. Hahm. Nanotechnology, 17, 2878 (2006)
  13. H.M. Xiong, Y. Xu, Q.G. Ren, Y.Y. Xia. J. Am. Chem. Soc., 130, 7522 (2008)
  14. Nanomaterials: Synthesis, Properties and Applications, eds by A.S. Edelstein, R.C. Cammarata. (Institute of Physics Publishing, Bristol, 1996)
  15. K.S. Kim, Y.S. Kang, J.H. Lee, Y.J. Shin, N.G. Park, K.S. Ryu, S.H. Chang. Bull. Corean Chem. Soc., 26 (12), 1921 (2005)
  16. D. Wei, H.E. Unalan, D. Han, Q. Zhang, L. Niu, G. Amaratunga, T.A. Ryhanen. Nanotechnology, 19, 424 006 (2008)
  17. I. Poulios, D. Makri, X. Prohasha. Global Nest Int. J., 1, 55 (1999)
  18. D.P. Norton, S.J. Pearton, A.F. Hebard. Appl. Phys. Lett., 88, 239 (2003)
  19. H. Wang, B.S. Kang, F. Ren. Appl. Phys. Lett., 87, 172 105 (2005)
  20. L. Spanhel, M.A. Anderson. J. Am. Chem. Soc., 113, 2826 (1991)
  21. L.P. Snedeker, A.S. Risbud, O. Masala, J.P. Zhang, R. Seshadri. Sol. St. Sci., 7, 1500 (2005)
  22. I.E. Alexander, H.P. Klug. X-ray diffraction procedures for polycrystaline and amorphous materials (N.Y., Wiley and Sons, 1954) Chap. 7
  23. A.B. Djuristic, Y.H. Leung. Mater. View. Com., 2, 944 (2006)
  24. D.S. Bohle, C.J. Spina. J. Am. Chem. Soc., 129, 12 380 (2007)
  25. L. Irimpan, V.P.N. Nampoori, P. Radhakrisnan, A. Deepthy, B. Krishnan. J. Appl. Phys., 102, 063 524 (2007)
  26. R. Viswanatha, S. Sammer, B. Satpati, P.V. Satyam, B.N. Dev, D.D. Sharma. J. Mater. Chem., 14, 661 (2004)
  27. K. Vanheusden, W.L. Warren, C.H. Seager, D.R. Tallant, J.A. Voigt. J. Appl. Phys., 79, 7983 (1996)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.