Электромагнитные свойства полимерных композитов Li0.33Fe2.29Zn0.21Mn0.17O4/П(ВДФ-ТФЭ) в области частот 100-7000 МГц
Российский научный фонд, № 19-19-00694 от 06.05.2019 г.
Исаев И.М.1, Костишин В.Г.1, Шакирзянов Р.И.1, Каюмова А.Р.1, Салогуб Д.В.1
1Национальный исследовательский технологический университет "МИСиС", Москва, Россия
Email: isa@misis.ru, drvgkostishyn@mail.ru
Поступила в редакцию: 19 августа 2021 г.
В окончательной редакции: 9 сентября 2021 г.
Принята к печати: 9 сентября 2021 г.
Выставление онлайн: 18 октября 2021 г.
Рассмотрены электромагнитные и радиопоглощающие свойства полимерного композита с добавкой из литиевого феррита-шпинели состава Li0.33Fe2.29Zn0.21Mn0.17O4 в диапазоне частот 100-7000 МГц. Показано, что образцы с массовой долей феррита 60, 80% имеют выраженные радиопоглощающие свойства, измеренные с помощью коэффициента отражения на металлической пластине. Для композита с 80% феррита минимальное значение коэффициента отражения составило -37.5 дБ на частоте 2.71 ГГц c шириной поглощения на уровне -10 дБ ~3 ГГц. Высокие значения показателей поглощения напрямую связаны с использованием сегнетоэлектрического полимера П(ВДФ-ТФЭ) в качестве связующего, что выражается в совместном действии механизмов поглощения магнитной и сегнетоэлектрической фаз. Ключевые слова: литиевый феррит, полимерный композит, поливинилиденфторид, радиопоглощающий материал.
- S.B. Narang, K. Pubby. J. Magn. Magn. Mater., 519, 167163 (2021)
- P. Thakur, D. Chahar, S. Taneja, N. Bhalla, A. Thakur. Ceram. Int., 46 (10, рt B), 15740 (2020)
- K.K. Kefeni, T.A.M. Msagati, T.T. Nkambule, B.B. Mamba. Mater. Sci. Eng. C, 107, 110314 (2020)
- Л.М. Летюк, В.Г. Костишин, А.В. Гончар. Технология ферритовых материалов магнитоэлектроники (М., МИСиС, 2005) с. 352
- P.B. Belavi, G.N. Chavan, L.R. Naik, R. Somashekar, R.K. Kotnala. Mater. Chem. Phys., 132 (1), 138 (2012)
- V. Manikandan, J.H. Kim, A. Mirzaei, S.S. Kim, S. Vigneselvan, M. Singh, J. Chandrasekaran. J. Mol. Struct., 1177, 485 (2019)
- S. Rana, J. Rawat, R.D.K. Misra. Acta Biomaterialia, 1 (6), 691 (2005)
- E.V. Yakushko, L.V. Kozhitov, D.G. Muratov, E.Y. Korovin, A.A. Lomov, A.V. Popkova. Rus. Phys. J., 63 (12), 2226 (2021)
- X. Zeng, X. Cheng, R. Yu, G.D. Stucky. Carbon, 168, 606 (2020)
- N.N. Ali, Y. Atassi, A. Salloum, A. Charba, A. Malki, M. Jafarian. Mater. Chem. Phys., 211, 79 (2018)
- Z. Jiao, Z. Yao, J. Zhou, K. Qian, Y. Lei, B. Wei, W. Chen. Ceram. Int., 46 (16, pt A), 25405 (2020)
- P. Saha, T. Debnath, S. Das, S. Chatterjee, S. Sutradhar. Mater. Sci. Eng. B, 245, 17 (2019)
- M. Arana, P.G. Bercoff, S.E. Jacobo. Procedia Mater. Sci., 1, 620 (2012)
- M. Arana, V. Galvan, S.E. Jacobo, P.G. Bercoff. J. Alloys Compd., 568, 5 (2013)
- F. Xie, Y. Chen, M. Bai, P. Wang. Ceram. Int., 45 (14), 17915 (2019)
- X. Wang, Y. Li, Z. Chen, H. Zhang, H. Su, G. Wang, Y. Liao, Z. Zhong. J. Alloys Compd., 797, 566 (2019)
- Y. Gao, Z. Wang, R. Shi, J. Pei, H. Zhang, X. Zhou. J. Alloys Compd., 805, 934 (2019)
- P. Baba, G. Argentina, W. Courtney, G. Dionne, D. Temme. IEEE Trans. Magn., 8 (1), 83 (1972)
- И.М. Исаев, В.Г. Костишин, В.В. Коровушкин, Д.В. Салогуб, Р.И. Шакирзянов, А.В. Тимофеев, А.Ю. Миронович. ЖТФ, 91 (9), 1376 (2021). [I.M. Isaev, V.G. Kostishin, V.V. Korovushkin, D.V. Salogub, R.I. Shakirzyanov, A.V. Timofeev, A.Yu. Mironovich. Tech. Phys., 66 (9), 1344 (2021)]
- T.Ungar, G. Tichy, J. Gubicza, R. Hellmig. Powder Diffr., 20 (4), 366 (2005)
- R. Singh Yadav, I. Kuv ritka, J. Vilcakova, J. Havlica, J. Masilko, L. Kalina, J. Tkacz, J. v Svec, V. Enev, M. Hajduchova. Adv. Nat. Sci: Nanosci. Nanotechnol., 8, 045002 (2017)
- Р.И. Шакирзянов, В.Г. Костишин, А.Т. Морченко, И.М. Исаев, В.В. Козлов, В.А. Астахов. ЖНХ, 65 (6), 758 (2020). [R.I. Shakirzyanov, V.G. Kostishyn, A.T. Morchenko, I.M. Isaev, V.V. Kozlov, V.A. Astakhov. Russ. J. Inorg. Chem., 65 (6), 829 (2020). DOI 10.1134/S0036023620060194]
- P. Martins, C.M. Costa, S. Lanceros-Mendez. Appl. Phys. A, 103, 233 (2011)
- V. Babayan, N.E. Kazantseva, R. Mouv cka, I. Sapurina, Yu.M. Spivak, V.A. Moshnikov. J. Magn. Magn., 324 (2), 161 (2012)
- V.A. Astakhov, R.I. Shakirzyanov, A.T. Morchenko, Z.V. Mingazheva, S.P. Kurochka. J. Nano-Electron. Phys., 8 (3), 03044 (2016)
- B. Wang, J. Wei, L. Qiao, T. Wang, F. Li. J. Magn. Magn. Mater., 324, 761 (2012)
- B. Wang, J. Wei, Y. Yang, T. Wang, F. Li. J. Magn. Magn. Mater., 323 (8), 1101 (2011)
- H.M. Musal, D.C. Smith. IEEE Trans. Magn., 26 (5), 1462 (1990)
- V.V. Kochervinskii. Bull. Rus. Acad. Sci., ser. phys., 84 (2), 144 (2020).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.