"Физика и техника полупроводников"
Вышедшие номера
Morphological and spectroscopic studies on the vertically aligned zinc oxide nanorods grown on low and high temperature deposited seed layer
Rayerfrancis A.1,2, Balaji Bhargav P.1,2, Ahmed N.1,2, Balaji C.2
1Department of Physics, SSN College of Engineering, Kalavakkam, India
2SSN Research Center, SSN College of Engineering, Kalavakkam, India E-mail:
Email: balajibhargavp@ssn.edu.in
Выставление онлайн: 19 ноября 2017 г.

Vertically aligned zinc oxide nanorods were grown on low and high temperature deposited aluminium doped zinc oxide seed layer by hydrothermal method and annealed to improve crystallinity. The morphology of the seed layer and the grown nanorods were studied by field emission scanning electron microscopy characterization technique. The properties of the zinc oxide nanorods were analyzed using laser spectroscopic studies. Resonant Raman spectroscopy reveals the unique increase in the A1(LO) mode of vibration with increase in count. The luminescence property of the nanorods was studied with photoluminescence spectrometer. The vertically aligned zinc oxide nanorods show, the very high band edge emission in the ultraviolet region of the electromagnetic spectrum. DOI: 10.21883/FTP.2017.12.45186.8562
  1. C. Klingshirn. Zinc oxide. 1st edn (Springer, Heidelberg, 2010)
  2. Yi Sun, Qing Li. CJLCD, 31, 635 (2016)
  3. R. Zhu, R. Yang. Nanotechnology, 25, 345702 (2014).
  4. S. Lee, L. Lee, Y. Chang. Adv. Mater. Res., 1101, 164 (2015)
  5. H. Huang, S. Wang. Angew. Chem., 127, 979 (2014)
  6. V. Suresh, M. Huang, M. Srinivasan, S. Krishnamoorthy. J. Mater. Chem., 22, 21871 (2012)
  7. S. Anas, S. Rahul, K. Babitha, R. Mangalaraja, S. Ananthakumar. Appl. Surf. Sci., 355, 98 (2015)
  8. A. Khan, M. Abbasi, J. Wissting, O. Nur, M. Willander. Phys. St. Sol. Rapid Res. Lett., 7, 980 (2013)
  9. A. Rayerfrancis, Bhargav P. Balaji , N. Ahmed, B. Chandra, S. Dhara. Physica B, 457, 96 (2015)
  10. W. Gao, Z. Li. Int. J. Nanotechn., 6, 245 (2009)
  11. T. Hwang, I. Yang, O. Kwon, M. Ryu, C. Byun, C. Hwang et al. Jpn. J. Appl. Phys., 50: 03CB06 (2011)
  12. P. Thiyagarajan, M. Kottaisamy, N. Rama, Rao M. Ramachandra. Scripta Mater., 59, 722 (2008)
  13. A. Rayerfrancis, Bhargav P. Balaji, N. Ahmed, S. Bhattacharya, B. Chandra, S. Dhara. Solar Cells. Silicon, 9, 31 (2015)
  14. M. Soomro, O. Nur, M. Willander. MRS Proc., 1556 (2013)
  15. T. Goto, S. Yin, T. Sato, T. Tanaka. Int. J. Nanotechn. 10, 48 (2013)
  16. H. Mirzaei, M. Darroudi. Ceram. Int., 43, 907 (2016)
  17. C. Jagadish, S. Pearton. Zinc oxide bulk, thin films and nanostructures (Elsevier, Amsterdam, 2006)
  18. D. Polsongkram, P. Chamninok, S. Pukird, L. Chow, P. Lupan, G. Chai et al. Physica B, 403, 3713 (2008)
  19. J. Venables, G. Spiller, M. Hanbucken. Rep. Prog. Phys., 47, 399 (1984)
  20. K. Kim, H. Kim, C. Lee. Mater. Sci. Eng. B, 98, 135 (2003)
  21. K. Alim, V. Fonoberov, M. Shamsa, A. Balandin. J. Appl. Phys., 97, 124313 (2005)
  22. K. Alim, V. Fonoberov, A. Balandin. Appl. Phys. Lett., 86, 053103 (2005)
  23. Y. Tong, L. Dong, Y. Liu, D. Zhao, J. Zhang, Y. Lu et al. Mater. Lett., 61, 3578 (2007)
  24. Z. Mao, W. Song, X. Xue, W. Ji, L. Chen, J. Lombardi et al. J. Phys. Chem. C, 116, 26908 (2012)
  25. R. Zhang, P. Yin, N. Wang, L. Guo. Solid State Sci., 11, 865 (2009)
  26. S. Chakraborty, S. Dhara, T. Ravindran, S. Pal, M. Kamruddin, A. Tyagi. AIP Advances, 1, 032135 (2011).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.