Conduction mechanism of an infrared emitting diode: impedance spectroscopy and current-voltage analysis
Donmez Adem1, Bayhan Habibe1
1Mugla University, Faculty of Arts and Sciences, Department of Physics, Mugla, Turkey
Выставление онлайн: 20 января 2012 г.
The bias dependent complex impedance spectra of a conventional GaAs based infrared emitting diode have been studied in the temperature range 150-300 K. It is found that for bias voltages lower than 0.7 V, the device behaves like a pure capacitor. However for Vdc>=0.7 V, an equivalent circuit model composed of a parallel resistor (Rp) and capacitor (Cp) network connected with a series resistance (Rs) can be used to describe the individual impedance contributions from interfacial and bulk regions of the diode. Fitting of experimental data to the proposed ac model reveal that the value of parallel device capacitance Cp increases with temperature whereas the parallel resistance Rp component decreases. The tendency of parallel resistance and parallel capacitance as a function of temperature is expected that thermally activated current transport mechanism dominates in the forward bias, which coincides with the analysing results of the dark forward current-voltage (I-V) characteristics. The temperature dependent I-V variations suggest that recombination in the depletion region has a paramount role.
- Vishay Telefunken, Data sheets of CQY37N Infrared Emitting Diode. http://www.vishay.com/docs/81002/81002.pdf
- E. Peiner, K. Fricke, D. Fehly, A. Schlachetzki, P. Hauptmann. Sensors and Actuators A, 68, 249 (1998)
- N.C. Das, J. Bradshaw, F. Towner, R. Leavitt, Solid-State Elec. 52, 1821 (2008)
- P. Sz\^ucs, V. Pintoa, B.V. Safronova. J. of Neuroscience Met. 177, 369 (2009)
- J.R. Macdonald. Impedance Spectroscopy (John Wiley and Sons, New York, 1987)
- E. Barsoukov, J.R. Macdonald. Impedance Spectroscopy: Theory, Experiment and Application (John Wiley and Sons Inc, Haboken, New Jersey, 2005)
- H. Bayhan, A.S. Kavasoglu. Sol. Energy 80, 1160 (2006)
- Y.Y. Proskuryakov, K. Durose, B.M. Taele. J. of App. Phys. 102, 024 504 (2007)
- L. Wu, Y. Ogawa, A. Tagawa. J. Food Eng. 87, 274 (2008)
- Y. Li, J. Gao , G. Yu, Y. Cao, A.J. Heeger. Chem. Phys. Lett. 287, 83 (1998)
- L.S.C. Pingree B.J. Scott, M.T. Russell, T.J. Marks, M.C. Hersam. Appl. Phys. Lett., 86, 073 509 (2005)
- T. Okachi, T. Nagase, T. Kobayashi, H. Naito. Appl. Phys. Lett., 94, 043 301 (2009)
- H.S. Raushenbach. Solar Array Design Hand Book (Van Nostrand Reinhold, New York, 1980)
- M.S. Suresh. Sol. Energy Mat. and Solar Cells, 43, 21 (1996)
- R.A. Kumar, M.S. Suresh, J. Nagaraju. Sol. Energy Mat. and Solar Cells, 85, 397 (2005)
- E. Schibli, A.G. Milness. Solid State Electron., 11, 323 (1968)
- W.A. Strifler, C.W.Bates, J. Appl. Phys., 71, 4358 (1992)
- R.A. Kumar, M.S. Suresh, J. Nagaraju. Sol. Energy Mat. and Solar Cells 77, 145 (2003)
- Halkias Millman. Integrated electronics (McGraw-Hill, New York, 1972)
- A.L. Fahrenbruch, R.H. Bube. Fundamentals of Solar Cells (Academic Press, 1983)
- V. Nadenau, U. Rau, A. Jasenek, H.W. Schock. J. Appl. Phys., 87, 584 (2000)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.