Sulfur passivation of semi-insulating GaAs: transition from Coulomb blockade to weak localization regime
Bagraev N.T.1,2, Chaikina E.I.3, Danilovskii E.Yu.1, Gets D.S.1, Klyachkin L.E.1, L'vova T.V.1, Malyarenko A.M.1
1Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
2Peter the Great St. Petersburg Polytechnic University (SPbPU), St. Petersburg, Russia
3Division de Fi sica Aplicada, Centro de Investigacion Cienti fica y de Educacion Superior de Ensenada, Carretera Ensenada-Tijuana No., Ensenada, Baja California, Mexico
Email: Bagraev@mail.ioffe.ru
Поступила в редакцию: 6 октября 2015 г.
Выставление онлайн: 20 марта 2016 г.
The sulfur passivation of the semi-insulating GaAs bulk (SI GaAs) grown in an excess phase of arsenic is used to observe the transition from the Coulomb blockade to the weak localization regime at room temperature. The I-V characteristics of the SI GaAs device reveal nonlinear behavior that appears to be evidence of the Coulomb blockade process as well as the Coulomb oscillations. The sulfur passivation of the SI GaAs device surface results in enormous transformation of the I-V characteristics that demonstrate the strong increase of the resistance and Coulomb blockade regime is replaced by the electron tunneling processes. The results obtained are analyzed within frameworks of disordering SI GaAs surface that is caused by inhomogeneous distribution of the donor and acceptor anti-site defects which affects the conditions of quantum-mechanical tunneling. Weak localization processes caused by the preservation of the Fermi level pinning are demonstrated by measuring the negative magnetoresistance in weak magnetic fields at room temperature. Finally, the studies of the magnetoresistance at higher magnetic fields reveal the h/2e Aharonov-Altshuler-Spivak oscillations with the complicated behavior due to possible statistical mismatch of the interference paths in the presence of different microdefects.
- M.A. Kastner. Phys. Today, 46, 24 (1993)
- C.T. Liang, M.Y. Simmons, S.G. Smith, G.H. Kim, D.A. Ritchie, M. Pepper. Phys. Rev. Lett., 81, 3507 (1998)
- S. Nagaraja, P. Matagne, V.Y. Thean, J.P. Leburton, Y.H. Kim, R.M. Martin. Phys. Rev. B: Condens. Matter, 56 (24), 15 752 (1997)
- S. Tarucha, D.G. Austing, T. Honda. Phys. Rev. Lett., 77, 3613 (1996)
- C.W.J. Beenakker. Phys. Rev. B, 44, 1646 (1991)
- H. Grabert, M.H. Devoret. Single charge tunneling, coulomb blockade phenomena in nanostructures NATO. Adv. Sci. Inst. Ser. B, v. 294 (Plenum Press, N.Y., ISBN 0-306-44229-9, 1992)
- S. Tarucha, T. Honda, T. Saku. Sol. St. Commun., 94, 413 (1995)
- N.N. Ledentsov. Proc. of the 23rd Int. Conf. on Physics of Semiconductors (22--27 July 1996, Berlin, Germany) ed. by M. Scheffler, R. Zimmermann (World Scientific, Singapore, 1996) v. 1, p. 19
- T.J. Thornton, M. Pepper, H. Ahmed, D. Andrews, G.J. Davies. Phys. Rev. Lett., 56, 1198 (1986)
- D.V. Lang, R.A. Logan. Phys. Rev. Lett. 39, 635 (1977)
- S.L. Feng, J.C. Bourgoin. Sol. St. Fenom., 10, 265 (1989)
- D.V. Averin, A.N. Korotkov, K.K. Likharev. Phys. Rev. B, 44, 6199 (1991)
- D. Goldhaber-Gordon, H. Shtrikman, D. Mahalu, D. Abush-Magder, U. Meirav, M.A. Kastner. Nature, 391, 156 (1998)
- N.T. Bagraev, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff. Superlat. Microstr., 23, 1333 (1998)
- N.T. Bagraev, A.D. Bouravlev, L.E. Klyachkin, A.M. Malyarenko, W. Gehlhoff, Yu.I. Romanov, S.A. Rykov. Semiconductors, 39, 6, 685 (2005)
- D.K. Ferry, S.M. Goodnick, J. Bird. Transport in Nanostructures (Cambridge University Press, 2009)
- S.J. Shin, J.J. Lee, H.J. Kang, J.B. Choi, S.-R.E. Yang, Y. Takahashi, D.G.Hasko. Nano Lett., 11 (4), 1591 (2011)
- U. Meriav, E.B. Foxman. Semicond. Sci. Technol., 10, 255 (1995)
- N.T. Bagraev, N.M. Kolchanova, V.A. Mashkov. JETP Lett., 45(5), 288 (1987)
- N.T. Bagraev. J. Phys. (France) I, 1, 1511 (1991)
- N.T. Bagraev. Mater. Sci. Forum, 143--147, 543 (1994)
- M. Martin, S. Makram-Ebeid. Physica, 116B, 371 (1983)
- T. Figielski. Appl. Phys. A, 35, 255 (1984)
- T. Figielski, T. Wosinski, A. Makosa. Acta Phys. Polonica A, 92 (4), 745 (1997)
- L. Esaki. Phys. Rev., 109 (2), 603 (1958)
- R.N. Thomas, H.M. Hobgood, G.W. Eldridge, D.L. Barrett, T.T. Braggins. Sol. St. Electron., 24 (5), 387 (1981)
- S. Makram-Ebeid. Semi-insulating III-V materials (Shiva Pub, Evian, 1982) p. 397
- A. Kangarlu, H. Guarriello, F.L. Berney, P.W. Yu. Appl. Phys. Lett., 59, 2290 (1991). K.R. Elliot. Appl. Phys. Lett., 42, 274 (1983)
- P. Schultz, A. von Lilienfeld. Modelling Simul. Mater. Sci. Eng., 17, 084 007 (2009)
- W.G. Schmidt, F. Bechstedt, J. Bernholc. Appl. Surf. Sci., 190, 264 (2002)
- V.P. La Bella, M.R. Krause, Z. Ding, P.M.Thibado. Surf. Sci. Reports, 60, 1 (2005)
- B.L. Altshuler, D. Khmel'nitzkii, A.I. Larkin, P.A. Lee. Phys. Rev. B, 22, 5142 (1980)
- S. Datta. Electronic Transport in Mesoscopic Systems (Cambridge University Press, ISBN 0521599431, 1995)
- K.K. Choi, D.C. Tsui, K. Alavi. Phys. Rev. B, 36, 7751(R) (1987)
- B.L. Al'tshuler, A.G. Aronov. JETP Lett., 33 (10), 499 (1981)
- S. Hikami, A.I. Larkin, Y. Nagaoka. Prog. Theor. Phys., 63 (2), 707 (1980)
- S.A. Studenikin, P.T. Coleridge, N. Ahmed, P.J. Poole, A. Sachrajda. Phys. Rev. B, 68, 035 317 (2003)
- J.A. Simmons, D.C. Tsui, G. Weimann. Surf. Sci., 196, 81 (1988)
- V.N. Bessolov, M.V. Lebedev. Semiconductors, 32 (11), 1141 (1998)
- E.Yu. Beliayev, B.I. Belevtsev, Yu.A. Kolesnichenko. Low Temperature Phys., 37, 318 (2011)
- H.G. Johnson, S.P. Bennett, R. Barua, L.H. Lewis, D. Heiman. Phys. Rev. B, 82, 085 202 (2010)
- M.M. Parish, P.B. Littlewood. Phys. Rev. B, 72, 094 417 (2005)
- E.R. Viana, G.M. Ribeiro, A.G. Oliveira, M.L. Peres, R.M. Rubinger, C.P.L. Rubinger. Mater. Res., 15 (4), 530 (2012)
- B. Jabakhanji, A. Michon, C. Consejo, W. Desrat, M. Portail, A. Tiberj, M. Paillet, A. Zahab, F. Cheynis, F. Lafont, F. Schopfer, W. Poirier, F. Bertran, P. Le F\`evre, A. Taleb-Ibrahimi, D. Kazazis, W. Escoffier, B.C. Camargo, Y. Kopelevich, J. Camassel, B. Jouault. Phys. Rev. B, 89, 085 422 (2014)
- D.W. Jung, J.P. Noh, A.Z.M.T. Islam, N. Otsuka. J. Phys. Soc. Jpn., 77, 074 721-8 (2008).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.