Comparative investigation of InP/InGaAs heterostructure-emitter tunneling and superlattice bipolar transistors
Tsai Jung-Hui1, Lee Ching-Sung2, Chiang Chung-Cheng1, Chao Yi-Ting1
1Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, TAIWAN
2Department of Electronic Engineering, Feng Chia University, Taichung 407, Taiwan
Поступила в редакцию: 11 сентября 2013 г.
Выставление онлайн: 20 мая 2014 г.
In this article, the characteristics of InP/InGaAs heterostructure-emitter bipolar transistors with 30 Angstrem, 50 Angstrem n-InP layer tunneling layers and a five-period InP/InGaAs superlattice are demonstrated and comparatively investigated by experimentally results and analysis. In the three devices, a 200 Angstrem n-In0.53Ga0.47As layer together with an n-InP tunneling emitter layer (or n-InP/n-InGaAs superlattice) forms heterostructure emitter to decrease collector-emitter offset voltage. The results exhibits that the largest collector current and current gain are obtained for the tunneling transistor with a 30 Angstrem n-InP tunneling emitter layer. On the other hand, some of holes injecting from base to emitter will be blocked at n-InP/n-InGaAs heterojunction due to the relatively small hole transmission coefficient in superlattice device, which will result in a considerable base recombination current in the n-InGaAs layer. Therefore, the collector current and current gain of the superlattice device are the smallest values among of the devices.
- G. Pitz, H.L. Hartnagel, K. Mause, F. Fiedler, D. Briggmann, Sol. St. Electron., 35, 937 (1992)
- J.L. Benchimol, J. Mba, A.M. Duchenois, B. Sermage, P. Launay, D. Caffin, M. Meghelli, M. Juhelm. J. Cryst. Growth, 188, 349 (1998)
- W.K. Huang, S.C. Huang, Y.M. Hsin, J.W. Shi, Y.C. Kao, J.M. Kuo. IET Optoelectron., 2, 6 (2008)
- Y.Z. Xiong, G.I. Ng, H. Wang, J.S. Fu. IEEE Trans. Electron Dev., 48, 2192 (2001)
- S.R. Bahl, N. Moll, V.M. Robbins, H.C. Kuo, B.G. Moser, G.E. Stillman. IEEE Electron. Dev. Lett., 21, 332 (2000)
- J.H. Tsai, C.H. Huang, Y.C. Ma, Y.R. Wu. Semiconductors, 46, 1539 (2012)
- J.J. Liou, C.S. Ho, L.L. Liou, C.I. Huang. Sol. St. Electron., 36, 819 (1993)
- Y.S. Lin, J.J. Jiang. IEEE Trans. Electron Dev., 56, 2945 (2009)
- J.H. Tsai, W.S. Lour, Y.T. Chao, S.S. Ye, Y.C. Ma, J.C. Jhou, Y.R. Wu, J.J. Ou-Yang. Thin Sol. Films, 521, 172 (2012)
- M. Mohiuddin, T. Tauqeer, J. Sexton, R. Knight, M. Missous. IEEE Trans. Electron. Dev., 57, 3340 (2010)
- C.Y. Chen, S.Y. Cheng, W.H. Chiou, H.M. Chuang, W.C. Liu. IEEE Electron. Dev. Lett., 24, 126 (2003)
- J.H. Tsai, C.S. Lee, W.S. Lour, Y.C. Ma, S.S. Ye. Semiconductors, 45, 646 (2011)
- M.K. Tsai, S.W. Tan, Y.W. Wu, Y.J. Yang, W.S. Lour. IEEE Trans. Electron. Dev., 50, 303 (2003)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.