Вышедшие номера
Optical constants detection in tin dioxide nano-size layers by surface plasmon resonance investigation
Serdega B.K.1, Matyash I.E.1, Maximenko L.S.1, Rudenko S.P.1, Smyntyna V.A.2, Grinevich V.S.2, Filevskaya L.N.2, Ulug B.3, Ulug A.3, Yucel B.M.3
1V.E. Lashkaryov Institute of Semiconductor Physics, National Academy of Sciences of Ukraine, Kiev, Ukraine
2Odessa National University named after I.I. Mechnikov, Odessa, Ukraine
3Akdeniz University, Antalya, Turkey
Поступила в редакцию: 13 апреля 2010 г.
Выставление онлайн: 17 февраля 2011 г.

Optical constants of tin dioxide nano-size layers were detected using surface plasmons resonance research technique. Squared reflectance indexes difference as well as the ones with s- and p-polarized light are measured simultaneously. Obtained in the work the refraction coefficient of the tin dioxide film gives the possibility to judge about the structural perfection of the layer and confirms that the film has significant porosity, which is created during the decomposition of the polymer materials used as structuring additives. It is shown that the resonance condition for surface plasmons may be destroyed through the interaction of surface plasmons with surface roughness potential of the film (medium dielectric properties variation).
  1. J. Homola, S.S. Yee, G. Gauglitz. Sensors Actuators B, 54, 3 (1999)
  2. N. Yamazoe. Sensors Actuators B, 5, 7 (1991)
  3. B. Hoffheins. Handbook of Chemical and Biological Sensors, ed. by R.F. Taylor, J.S. Schultz (Philadelphia, Institute of Physics, 1996)
  4. Y. Shimizu, M. Egashira. MRS Bulletin, 24, 18 (1999)
  5. A. Kolmakov, M. Moskovits. Ann. Rev. Mater. Res., 34, 151 (2004)
  6. M. Anastasescu, M. Gartner, S. Mihaiu, C. Anastasescu, M. Purica, E. Manea, M. Zaharescu. Proc. Int. Semiconductor Conf. (Sinaia, 2006) v. 1, p. 163
  7. R. Rella, P. Siciliano, S. Capone, M. Epifani, L. Vasanelli, A. Liciulli. Sensors Actuators B, 58, 283 (1999)
  8. M. Stadermann, S.J. Papadakis, M.R. Falvo, J. Novak, E. Show, Q. Fu, J. Liu, Y. Fridman, J.J. Boland, R. Superfine, S. Washburn. Phys. Rev. B, 69, 201 402 (2004)
  9. M.T. Woodside, P.L. McEuen. Science, 296, 1098 (2002)
  10. Y. Yaish, J.Y. Park, S. Rosenblatt, V. Sazonova, M. Brink, P.L. McEuen. Phys. Rev. Lett., 92, 046 401 (2004)
  11. G. Weick, G.-L. Ingold, R.A. Jalabert, D. Weinmann. Phys. Rev. B, 74, 165 421 (1996)
  12. L.K. Chau, Y.F. Lin, S.F. Cheng, T.J. Lin. Sensors Actuators B, 113, 100 (2006)
  13. T.W. Ebbesen, H.J. Lezec, H.F. Ghaemi, T. Thio, P.A. Wolf. Nature, 391, 667 (1998)
  14. A. Benabbas, V. Halte, J.Y. Bigot. Opt. Express, 13, 8730 (2005)
  15. S.A. Hooker. Proc. Nanoparticles 2002" (N.Y., 2002) p. 1
  16. I.E. Matyash, B.K. Serdega. Semiconductors, 38, 657 (2004)
  17. V.G. Zykov, B.K. Serdega. Sov. Phys. Semicond., 25, 1308 (1991)
  18. L.J. Berezhinsky, E.F. Venger, I.E. Matyash, A.V. Sachenko, B.K. Serdega. Semiconductors, 39, 1122 (2005)
  19. L.J. Berezhinsky, L.S. Maksimenko, I.E. Matyash, S.P. Rudenko, B.K. Serdega. Opt. Spectrosc., 105, 257 (2008)
  20. E. Comini, V. Guidi, C. Malagu, G. Martinelli, Z. Pan, G. Sberveglieri, Z.L. Wang. J. Phys. Chem. B, 108, 1882 (2004)
  21. L.J. Berezhinsky, O.S. Litvin, L.S. Maksimenko, I.E. Matyash, S.P. Rudenko, B.K. Serdega. Opt. Spectrosc., 107 (2), 277 (2009)
  22. P. Lorrain, D.P. Corson, F. Lorrain. Electromagnetic Fields and Waves, 3rd edn. (W.H. Freeman and Co., N.Y., 1988)
  23. L.N. Filevskaya, V.A. Smyntyna, V.S. Grinevich. Photoelectronics. Inter-Universities scientific articles (Odessa), 15, 11 (2006)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.