Вышедшие номера
Micro- and nano-structures in silicon studied by DLTS and scanning probe methods
Cavalcoli D.1, Cavallini A.1, Rossi M.1, Pizzini S.2
1Physics Dept University of Bologna, Viale Berti Pichat 6/II, Bologna, Italy
2Material Science Dept University of Milan-Bicocca, Via Cozzi 53, Milano, Italy
Поступила в редакцию: 12 сентября 2006 г.
Выставление онлайн: 19 марта 2007 г.

Presently there is a high interest in silicon-based optical devices that would render possible the development of fully silicon-based optoelectronics. Being an indirect gap semiconductor, silicon is poorly efficient as light emitter since radiative emission is limited by carrier recombination at non-radiative centers. One of the possible approaches to enhance the radiative emission from Si is the controlled introduction of micro- (dislocations) or nano- (nanocrystals) structures, which, providing quantum confinement of free carriers, prevent their diffusion towards non-radiative channels. Dislocations introduced in silicon by plastic deformation and Si nanocrystals embedded in amorphous silicon matrix have been investigated by junction spectroscopy and scanning probe microscopy methods. PACS: 61.72.-y, 71.55.Jv, 73.20.Hb, 73.50.Pz
  1. L. Pavesi. J. Phys. Condens. Matter, 15, R1169 (2003)
  2. L.T. Canham. Appl. Phys. Lett., 57, 1046 (1990)
  3. L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franz\`o, F. Priolo. Nature, 408, 440 (2000)
  4. S. Pizzini, M. Acciarri, S. Binetti, D. Cavallini, D. Chrastina, L. Colombo, E. Grilli, G. Isella, M. Lancin et al. Mater. Sci. Eng. B, (2006) in press
  5. M.A. Green, J. Zhao, J.A. Wang, P.J. Reece, M. Gal. Nature, 412, 805 (2001)
  6. V. Kveder, M. Badylevich, E. Steinman, A. Izotov, M. Seibt, W. Schroter. Appl. Phys. Lett., 84, 2106 (2004)
  7. W. Schroter, H. Cerva. In: Defect Interaction and Clustering (Trans Tech, Zurich, 2001)
  8. A. Castaldini, D. Cavalcoli, A. Cavallini, S. Pizzini. Phys. Rev. Lett., 95, 76401 (2005)
  9. A. Shah, J. Meier, E. Vallat-Sauvain, C. Droz, U. Kroll, N. Wyrsch, J. Guillet, U. Graf. Thin Sol. Films, 403--404, 179 (2002)
  10. A. Castaldini, D. Cavalcoli, A. Cavallini, S. Binetti, S. Pizzini. Appl. Phys. Lett., 86, 162 109 (2005)
  11. S. Binetti, M. Acciarri, M. Bollani, L. Fumagalli, H. von Kanel, S. Pizzini. Thin Sol. Films, 487, 19 (2005)
  12. D. Cavalcoli, A. Cavallini, M. Rossi. J. Electrochem. Soc., 151, G248 (2004)
  13. C. Kisielowski, E.R. Weber. Phys. Rev. B, 44, 1600 (1991)
  14. T. Mchedlidze, K. Matsumoto, E. Asano. Jap. J. Appl. Phys., 6A, 3426 (1999)
  15. A.A. Istratov, H. Hieslmair, E.R. Weber. Appl. Phys. A, 69, 13 (1999)
  16. K. Lips, P. Kanschat, W. Fuhs. Sol. Energy Mater. Solar Cells, 78, 513 (2003)
  17. L. Kronik, Y. Shapira. Surf. Interface Anal., 31, 954 (2001)
  18. D. Gal, Y. Mastai, G. Hodes, L. Kronik. J. Appl. Phys., 86, 5573 (1999)
  19. S. Gupta, G. Morell, B.R. Weiner. J. Non-Cryst. Sol., 343, 131 (2004)
  20. B. Rezek, J. Stuchlik, A. Fejfar, J. Kocka. J. Appl. Phys., 92, 587 (2002)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.