Вышедшие номера
Эволюция состава и рельефа поверхности полупроводников AIIIBV в процессе распыления ионами аргона
Иешкин А.Е. 1, Татаринцев А.А. 1, Сенатулин Б.Р. 2, Скрылева Е.А. 2
1Московский государственный университет им. М.В. Ломоносова (физический факультет), Москва, Россия
2Национальный исследовательский технологический университет "МИСиС", Москва, Россия
Email: ieshkin@physics.msu.ru, tatarintsev@physics.msu.ru
Поступила в редакцию: 13 ноября 2024 г.
В окончательной редакции: 15 января 2025 г.
Принята к печати: 15 января 2025 г.
Выставление онлайн: 13 февраля 2025 г.

Проведено систематическое исследование состава и структуры поверхности полупроводников группы AIIIBV (GaP, GaAs, GaSb, InP, InAs, InSb) после облучения ионами аргона с энергией 3 кэВ. Состав поверхности определялся с помощью рентгенфотоэлектронной спектроскопии. Полученные результаты обсуждаются с точки зрения процессов преимущественного распыления и радиационно-стимулированной сегрегации. Показано, что наблюдаемое обогащение металлическим компонентом не объясняется только этими процессами. На поверхности материалов, содержащих индий, наблюдался развитый нанорельеф в виде колонн, в то время как на поверхности GaP развития рельефа не обнаружено. Такое поведение связывается с закономерностями смачивания поверхности полупроводника компонентом, обогащающим поверхность. Ключевые слова: распыление, AIIIBV, нанорельеф, преимущественное распыление, сегрегация, РФЭС.
  1. М.П. Михайлова, К.Д. Моисеев, Ю.П. Яковлев. ФТП, 44 (4), 291 (2019). DOI: 10.61011/FTP.2024.12.59828.7328 [M.P. Mikhailova, K.D. Moiseev, Y.P. Yakovlev. Semiconductors, 53, 273 (2019)]. DOI: 10.1134/S1063782619030126)
  2. А.И. Стручков, К.В. Карабешкин, П.А. Карасев, А.И. Титов. ФТП, 57 (9), 738 (2023). DOI: 10.61011/FTP.2024.12.59828.7328
  3. А.С. Токарев, О.А. Лапшина, А.А. Козырев. ФТП, 57 (1), 58 (2023). DOI: 10.61011/FTP.2024.12.59828.7328 [A.S. Tokarev, O.A. Lapshina, A.A. Kozyrev. Semiconductors, 57 (1), 54 (2023)]. DOI: 10.61011/FTP.2024.12.59828.7328)
  4. B. Rauschenbach. Low-Energy Ion Irradiation of Materials. Fundamentals and Application (Springer, 2022). DOI: 10.1007/978-3-030-97277-6
  5. N.Q. Lam, H. Wiedersich. Methods B, 18, 471 (1986). DOI: 10.1016/S0168-583X (86)80073-8
  6. J.B. Malherbe. Crit. Rev. Solid State Mater. Sci., 19 (2), 55 (1994). DOI: 10.1080/10408439408244588
  7. J.B. Malherbe. Crit. Rev. Solid State Mater. Sci., 19 (3), 129 (1994). DOI: 10.1080/10408439408244589
  8. S. Facsko, T. Dekorsy, C. Koerdt, C. Trappe, H. Kurz, A. Vogt, H.L. Hartnagel. Science, 285, 1551 (1999). DOI: 10.1126/science.285.5433.1551
  9. S. Le Roy, E. Barthel, N. Brun, A. Lelarge, E. S nderg rd. J. Appl. Phys., 106, 094308 (2009). DOI: 10.1063/1.3243333
  10. O. El-Atwani, S.A. Norris, K. Ludwig, S. Gonderman, J.P. Allain. Sci. Rep., 5, 18207 (2015). DOI: 10.1038/srep18207
  11. www.srim.org
  12. www.quases.com/products/quases-imfp-tpp2m
  13. T.K. Chini, J. Kato, M. Tanemura, F. Okuyama. Methods B, 95, 313 (1995). DOI: 10.1016/0168-583X (94)00539-7
  14. E. Trynkiewicz, B.R. Jany, D. Wrana, F. Krok. Appl. Surf. Sci., 427, 349 (2018). DOI: 10.1016/j.apsusc.2017.08.240
  15. С.П. Зимин, И.И. Амиров, М.С. Тиванов, Н.Н. Колесников, О.В. Королик, Л.С. Ляшенко, Д.В. Жигулин, Л.А. Мазалецкий, С.В. Васильев, О.B. Савенко. ФТТ, 65 (4), 692 (2023). DOI: 10.61011/FTP.2024.12.59828.7328 [S.P. Zimin, I.I. Amirov, M.S. Tivanov, N.N. Kolesnikov, O.V. Korolik, L.S. Lyashenko, D.V. Zhyhulin, L.A. Mazaletskiy, S.V. Vasilev, O.V. Savenko. Phys. Solid State, 65 (4), 671 (2023).] DOI: 10.61011/FTP.2024.12.59828.7328
  16. S.P. Zimin, N.N. Kolesnikov, I.I. Amirov, V.V. Naumov, E.S. Gorlachev, S. Kim, N.H. Kim. Crystals, 12, 111 (2022). DOI: 10.3390/cryst12010111
  17. I. Sulania, P. Kumar, P.K. Priya, H.P. Bhasker, U.B. Singh, R.K. Karn, C. Tyagi, R.P. Yadav. Rad. Phys. Chem., 199, 110353 (2022). DOI: 10.1016/j.radphyschem.2022.110353
  18. A. Hernandez, Y. Kudriavtsev, C. Salinas-Fuentes, C. Hernandez-Gutierrez, R. Asomoza. Vacuum, 171, 108976 (2020). DOI: 10.1016/j.vacuum.2019.108976
  19. D. Xia, Y.B. Jiang, J. Notte, D. Runt. Appl. Surf. Sci., 538, 147922 (2021). DOI: 10.1016/j.apsusc.2020.147922
  20. Y.R. Luo. Comprehensive Handbook of Chemical Bond Energies (CRC Press, 2007)
  21. П. Зигмунд. Распыление ионной бомбардировкой, общие теоретические представления. В сб.: Распыление твердых тел ионной бомбардировкой I, под ред. Р. Бериш (М., Мир, 1984) с. 23. [P. Sigmund. Sputtering by ion bombardment theoretical concepts. In: Sputtering by Particle Bombardment I, ed. by R. Behrisch (Springer Verlag, Berlin, 1981)]
  22. H. Gades, H.M. Urbassek. Nucl. Instrum. Meth. B, 88, 218 (1994). DOI: 10.1016/0168-583X (94)95316-3
  23. M.P. Seah, T.S. Nunney. J. Physica D, 43 (25), 253001 (2010). DOI: 10.1088/0022-3727/43/25/253001
  24. D.R. Lide (ed.). Handbook of Chemistry and Physics (CRC Press, 2004)
  25. M. Tanemura, M. Ukita, F. Okuyama. Surf. Sci., 426, 141 (1999). DOI: 10.1016/S0039-6028(99)00174-0
  26. T. Aoyama, M. Tanemura, F. Okuyama. Appl. Surf. Sci., 100/101, 351 (1996). DOI: 10.1016/0169-4332(96)00240-1
  27. V.S. Chernysh, A.E. Ieshkin, D.S. Kireev, A.A. Tatarintsev, B.R. Senatulin, E.A. Skryleva. Nucl. Instrum. Meth. B, 554, 165463 (2024). DOI: 10.1016/j.nimb.2024.165463
  28. M.A. Lively, B. Holybee, M. Toriyama, S. Facsko, J.P. Allain. Sci. Rep., 10, 8253 (2020). DOI: 10.1038/s41598-020-64971-9
  29. S. Valeri, M. Lolli. Surf. Interf. Anal., 16, 59 (1990). DOI: 10.1002/sia.740160115

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.