Вышедшие номера
High-Quality Etching of GaN Materials with Extremely Slow Rate and Low Damage
Полная версия: 10.1134/S1063782621030180
Changchun University of Science and Technology, Science Foundation of Changchun University of Science and Technology, 6141B010328
Zhang X.-M.1,2, Yan C.-L.1, Yu G.-H.2, Zeng C.-H.1,2, Sun T.-Y.2, Xing Z.2, Wang Y.-Q.2, Yang J.-H.1, Zhang B.-S.2
1State Key Laboratory on High Power Semiconductor Lasers, Changchun University of Science and Technology, Changchun,, China
2Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-tech and Nano-bionics, CAS, Suzhou, China
Email: changling_yan@126.com
Поступила в редакцию: 16 сентября 2020 г.
Выставление онлайн: 12 декабря 2020 г.

High-quality gallium nitride etching is highly desirable in electronic device fabrications. For the GaN base devices, the electronic properties largely depended on the etching induced surface damages. To overcome this, a controllable GaN etching method was developed using inductively coupled plasma reactive ion etching (ICP-RIE) by controlling radio frequency (RF) power, and DC bias. The etching rate, DC bias, and root-mean-square surface roughness were measured as a function of bias power under different RF, 40 and 13.56 MHz. The effects of ICP power and chlorine to argon percentage were systematically studied. An extremely slow etching rate and low-damage surface were achieved by reducing DC bias power to 25 W under RF 40 MHz. Ni|Au Schottky diodes were fabricated and characterized. The diode fabricated on the 40-MHz RF etching GaN surface has a much lower ideal factor and higher barrier height than non-etched GaN and RF 13.56 MHz etching GaN. Keywords: etching, radio frequency bias, surface roughness, plasma-induced damage, Schottky electrodes.

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.