"Физика и техника полупроводников"
Вышедшие номера
Carrier velocity effect on carbon nanotube Schottky contact
Fathi Amir1, Ahmadi M.T.2,3, Ismail Razali2
1Department of Electrical Engineering, Microelectronic Research Laboratory, Urmia University, Urmia, Iran
2Department of Electronic Engineering, University Technology Malaysia, Skudai, Johor Darul Takzim, Malaysia
3Nanotechnology Research Center, Nanoelectronic Group, Physics Department, Urmia University, Urmia, Iran .amir
Email: fathi.amir@hotmail.com, mt.ahmadi@urmia.ac.ir, Razali@fke.utm.my
Поступила в редакцию: 23 июля 2015 г.
Выставление онлайн: 20 июля 2016 г.

One of the most important drawbacks which caused the silicon based technologies to their technical limitations is the instability of their products at nano-level. On the other side, carbon based materials such as carbon nanotube (CNT) as alternative materials have been involved in scientific efforts. Some of the important advantages of CNTs over silicon components are high mechanical strength, high sensing capability and large surface-to-volume ratio. In this article, the model of CNT Schottky transistor current which is under exterior applied voltage is employed. This model shows that its current has a weak dependence on thermal velocity corresponding to the small applied voltage. The conditions are quite different for high bias voltages which are independent of temperature. Our results indicate that the current is increased by Fermi velocity, but the I-V curves will not have considerable changes with the variations in number of carriers. It means that the current doesn't increase sharply by voltage variations over different number of carriers.
  1. M. Monthioux, V. Kuznetsov. Carbon, 44 (9), 1621 (2006)
  2. M.-F. Yu, O. Lourie, M.J. Dyer, K. Moloni, T.F. Kelly, R.S. Ruoff. Science, 287 (5453), 637 (2000)
  3. A. Oberlin, M. Endo, T. Koyama. J. Cryst. Growth, 32 (3), 335 (1976)
  4. Endo Morinobu, M.S. Dresselhaus. Carbon Fibers and Carbon Nanotubes (Interview, Nagano, Japan, 2002)
  5. X. Lu, Z. Chen. Chem. Rev. 105 (10), 3643 (2005)
  6. W.Ch. Postma Henk, T. Teepen, Z. Yao, M. Grifoni, C. Dekker. Science, 293 (5527), 76 (2001)
  7. G. Collins Philip, M.S. Arnold, P. Avouris. Science, 292 (5517), 706 (2001)
  8. H.S.P. Wong. IBM J. Res. Dev., 46, 133 (2002). P.L. McEuen, J.Y. Park. MRS Bull., 29, 272 (2004)
  9. Javey Ali, J. Guo, Q. Wang, M. Lundstrom, H. Dai. Nature, 424 (6949), 654 (2003)
  10. P. Geetha, R.S.D. WahidaBanu, J. Comput. Electron., 13, 900 (2014)
  11. Fazel Sharifi, Mohammad Hossein Moaiyeri, Keivan Navi, Nader Bagherzadeh. J. Comput. Electron. (2015)
  12. Sara Sangtarash, Hatef Sadeghi, M.T. Ahmadi, M.H. Ghadiry, Sohail Anwar, Razali Ismail. J. Computat. Theor. Nanoscience, 9, p. 1554-1557 (4) (2012)
  13. V. Perebeinos, J. Tersoff, W. Haensch. Phys. Rev. Lett., 111 (23), 236 802 (2013)
  14. Chenguang Lu, Lei An, Qiang Fu, Jie Liu, Hong Zhang, James Murduck. Appl. Phys. Lett., 88, 133 501 (2006)
  15. Sunghwan Jung. J. Korean Phys. Soc., 65 (1), p. L1-L5
  16. A.W. Cummings, F. Le'onard. Appl. Phys. Lett., 98, 263 503 (2011)
  17. S.M. Sze, K.K. Ng. Physics of semiconductor devices (Wiley-Blackwell, 2007)
  18. M. Lijima et al. Chem. Phys. Lett., 414 (4-6), 520 (2005)
  19. Mohammad Taghi Ahmadi, Razali Ismail, Michael L.P. Tan, Vijay K. Arora. J. Nanomaterials, 2008 (2008), Article ID 769250, 8 p
  20. M. Yang, K. Teo, W. Milne, D. Hasko. Appl. Phys. Lett., 87, 253 116 (2005)
  21. M.T. Ahmadi et al. Intern. J. Nanotechnology, 6 (7-8), 601 (2009)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.