Плазмохимическое атомно-слоевое осаждение слоев InP и многослойных наноструктур InP/GaP на кремнии
Министерство науки и высшего образования РФ , , 0791-2023-0007
Гудовских А.С.
1,2, Уваров А.В.
1, Баранов А.И.
1, Вячеславова Е.А.
1, Максимова А.А.
1,2, Кириленко Д.А.
31Санкт-Петербургский национальный исследовательский Академический университет имени Ж.И. Алфёрова Российской академии наук, Санкт-Петербург, Россия
2Санкт-Петербургский государственный электротехнический университет "ЛЭТИ" им. В.И. Ульянова (Ленина), Санкт-Петербург, Россия
3Физико-технический институт им. А.Ф. Иоффе РАН, Санкт-Петербург, Россия
Email: gudovskikh@spbau.ru, lumenlight@mail.ru, itiomchik@yandex.ru, cate.viacheslavova@yandex.ru, deer.blackgreen@yandex.ru, zumsisai@gmail.com
Поступила в редакцию: 24 августа 2023 г.
В окончательной редакции: 1 сентября 2023 г.
Принята к печати: 1 сентября 2023 г.
Выставление онлайн: 22 октября 2023 г.
Впервые с помощью метода плазмохимического атомно-слоевого осаждения были выращены слои InP при температуре 380oC на Si-подложках. Согласно исследованиям с помощью рентгенодифракционного анализа и просвечивающей электронной микроскопии слои имеют микрокристаллическую структуру с размером зерен 20-30 нм и преимущественной ориентацией (111). На спектрах комбинационного рассеяния света четко различим пик LO на 341.9 см-1, характерный для кристаллического InP. Микрокристаллические слои InP, выращенные на кварцевых подложках, продемонстрировали фотопроводимость 2.3 Ом-1·см-1 при освещении солнечным спектром AM1.5G (100 мВт/см2). Исследования по интеграции роста слоев бинарных соединений InP и GaP в одном процессе атомно-слоевого плазмохимического осаждения продемонстрировали принципиальную возможность контроля состава цифровых твердых растворов InP/GaP. Для цифровых твердых растворов InP/GaP характерно сливание LO пиков InP (341.9 см-1) и GaP (365 см-1) на спектрах комбинационного рассеяния света. При этом с ростом доли GaP наблюдается расширение отклика от слоя за счет сдвига края в сторону TO пика GaP (402 см-1). Исследования с помощью измерения пропускания и отражения оптических свойств микрокристаллических слоев цифровых твердых растворов InP/GaP, осажденных на прозрачные подложки, продемонстрировали возможность вариации оптической ширины запрещенной зоны в широком диапазоне 1.3-2 эВ. Ключевые слова: GaP, InP, атомно-слоевое осаждение, многослойные структуры, фотопроводимость.
- P. Cano, C.M. Ruiz, A.L. Navarro, B. Galiana, I. Garci a, I. Rey-Stolle. Solar Cells. Coatings, 11 (4), 398 (2021)
- D.L. Lepkowski, T.J. Grassman, J.T. Boyer, D.J. Chmielewski, Ch. Yi, M.K. Juhl, A.H. Soeriyadi, N. Western, H. Mehrvarz, U. Romer, A. Ho-Baillie, Ch. Kerestes, D. Derkacs, S.G. Whipple, A.P. Stavrides, S.P. Bremner, S.A. Ringel. Sol. Energy Mater. Solar Cells, 230, 111299 (2021)
- J.T. Boyer, A.N. Blumer, Z.H. Blumer, D.L. Lepkowski, T.J. Grassman. J. Cryst. Growth, 571, 126251 (2021)
- A. Navarro, E. Garci a-Tabares, Q.M. Ramasse, P. Cano, I. Rey-Stolle, B. Galiana. Appl. Surf. Sci., 610, 155578 (2023)
- I. Sakata, H. Kawanami. Appl. Phys. Express, 1, 091201 (2008)
- P. Perfetti, F. Patella, F. Sette, C. Quaresima, C. Capasso, A. Savoia, G. Margaritondo. Phys. Rev. B, 30, 4533 (1984)
- A.D. Katnani, G. Margaritondo. Phys. Rev. B, 28, 1944 (1983)
- O. Romanyuk, T. Hannappel, F. Grosse. Phys. Rev. B, 88, 115312 (2013)
- A.S. Gudovskikh, A.I. Baranov, A.V. Uvarov, D.A. Kudryashov, J.-P. Kleider. J. Phys. D: Appl. Phys., 55, 135103 (2022)
- F. Hatami, W.T. Masselink, J.S. Harris. Nanotechnology, 17, 3703 (2006)
- R. Kapadia, Z. Yu, H.H. Wang, M. Zheng, C. Battaglia, M. Hettick, D. Kiriya, K. Takei, P. Lobaccaro, J.W. Beeman, J.W. Ager, R. Maboudian, D.C. Chrzan, A. Javey. Sci. Rep., 3, 2275 (2013)
- W. Metaferia, Y.-T. Sun, S.M. Pietralunga, M. Zani, A. Tagliaferri, S. Lourdudoss. J. Appl. Phys., 116, 033519 (2014)
- A.S. Gudovskikh, I.A. Morozov, A.V. Uvarov, D.A. Kudryashov, E.V. Nikitina, A.S. Bukatin, V.N. Nevedomskiy, J.-P. Kleider. J. Vac. Sci. Technol. A, 36, 21302 (2018)
- S. Yun, C.-H. Kuo, P.-C. Lee, S.T. Ueda, V. Wang, H. Kashyap, A.J. Mcleod, Z. Zhang, C.H. Winter, A.C. Kummel. Appl. Surf. Sci., 619, 156727 (2023)
- A.V. Uvarov, A.S. Gudovskikh, V.N. Nevedomskiy, A.I. Baranov, D.A. Kudryashov, I.A. Morozov, J.-P. Kleider. J. Phys. D: Appl. Phys., 53, 345105 (2020)
- M.J. Seong, Olga I. Micic, A.J. Nozik, A. Mascarenhas, Hyeonsik M. Cheong. Appl. Phys. Lett., 82, 185 (2003)
- S. Hayashi. Sol. St. Commun., 56, 375 (1985)
- А. Меден, М. Шо. Физика и применение аморфных полупроводников (М., Мир, 1991) c. 131. [Пер. с англ.: A. Madan, M.P. Shaw. The Physics and Applications of Amorphous Semiconductors (Boston--San Diego--N.Y.--London--Sydney--Tokyo--Toronto, Academic Press, 1988)]
- M. Goerlitzer, N. Beck, P. Torres, J. Meier, N. Wyrsch, A. Shah. J. Appl. Phys., 80 (9), 5111 (1996)
- N. Beck, N. Wyrsch, Ch. Hof, A. Shah. J. Appl. Phys., 79 (12), 9361 (1996)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.