"Физика и техника полупроводников"
Вышедшие номера
Structural, mechanical and thermodynamic properties of Cu2CoXS4 (X = Si,Ge,Sn) studied by a density functional theory method
Полная версия: 10.1134/S1063782618040127
Dong Yu Jing1, Gao Yan Li1
1School of Science and Technology, Xinyang University, Xinyang, People's Republic of China
Email: dongyujing-001@163.com
Выставление онлайн: 20 марта 2018 г.

In the paper, we will investigate the basic physical properties of Cu2CoXS4 (X = Si, Ge, Sn) by using the density functional theory approach. The calculated lattice parameters are in good correspondence with the theoretical data, and the chosen theoretical method is proved to be reliable. In the first part, the Mulliken population analysis indicates the bonds between S atoms and other three atoms in Cu2CoXS4 (X = Si, Ge, Sn) exhibit the feature of covalent bond. And then, the calculated elastic constants prove the mechanical stability of Cu2CoXS4 (X = Si, Ge, Sn) in I 42m structure. Results are given for B/G and AU reveal Cu2CoXS4 (X = Si, Ge, Sn) can behave as a ductile and elastic material. Finally, the pressure and temperature dependence of heat capacity, thermal expansion, entropy and Debye temperature in the rang from 0 to 1000 K and from 0 GPa to 50 GPa are also reported in this study.
  1. H. Matsushita, T. Maeda, A. Katsui. J. Cryst. Growth, 208, 416 (2000)
  2. W. Schafer, R. Nitsche. Mater. Res. Bull., 9, 645 (1974)
  3. L. Guen, W.S. Glaunsinger. J. Solid State Chem., 35, 10 (1980)
  4. X. Zhang, N. Bao, B. Lin. Tetrahedron, 24, 105706 (2013)
  5. C. Yong, R. Deng, W. Gang. J. Mater. Chem., 22, 23136 (2012)
  6. S.R. Hall, J.T. Szymanski, J.M. Stewart. Can. Mineral., 2, 131 (1978)
  7. K. Mokurala, A. Kamble, P. Bhargava. IEEE Photovolt. Spec. Conf., 1 (2015)
  8. A. Ghosh, D.K. Chaudhary, A. Biswas. RSC Adv., 6, 115204 (2016)
  9. X. Zhang, N. Bao, K. Ramasamy. Chem. Commun., 43, 4956 (2012)
  10. F.D. Benedetto, G.P. Bernardini, D. Borrini. Phys. Chem. Miner., 31, 683 (2005)
  11. C. Yong, R. Deng, W. Gang. J. Mater. Chem., 22, 23136 (2012)
  12. X. Zhang, N. Bao, B. Lin et al. Nanotechnology, 24, 105706 (2013)
  13. M.A. Macias, M. Quintero, E. Moreno. Revista Latinoamer. De Metalurgia Y Mater., 34, 1 (2014)
  14. P.P. John, B. Kieron, E. Matthias. Phys. Rev. Lett., 77, 3865 (1996)
  15. L. Guo, G. Hu, W.J. Feng. Structural, Acta Phys.-Chim. Sin., 29, 929 (2013)
  16. J.H. Yuan, B. Gao, W. Wang et al. Acta Phys.-Chim. Sin., 31, 1302 (2015)
  17. Y.J. Dong, Y.L. Gao. Chalcogenide Lett., 515 (2016)
  18. Z.J. Liu, X.W. Sun, X.M. Tan. Solid State Commun., 144, 264 (2007)
  19. M.A. Blanco, A.M. Pendas, E. Francisco. J. Molecul. Struct. (Theochem.), 368, 245 (1996)
  20. E. Francisco, J.M. Recio, M.A. Blanco. J. Phys. Chem. A, 102, 1595 (2013)
  21. F. Birch. J. Geophys. Res., 83, 1257 (1978)
  22. F. Birch. Phys. Rev., 71, 809 (1947)
  23. F.D. Murnaghan. Proc. National Acad. Sci. USA, 30, 244 (1944)
  24. Y.J. Dong, Y.L. Gao. Yunnan Normal University, 36, 14 (2016)
  25. M. Born, K. Huang (Oxford, Clarendon Press, 1988)
  26. S. Ozdemir Kart, T. Cagin. J. Alloys Comp., 508, 177 (2010)
  27. R.W. Hill. Proc. Phys., 65349 (1952)
  28. S.F. Pugh. XCII. Philos. Mag., 45, 823 (2009)
  29. X. Zhang, C. Ying, Z. Li. Superlat. Microst., 52, 459 (2012)
  30. I.N. Frantsevich, F.F. Voronov, S.A. Bokuta (Naukova Dumka, Kiev, 60 1983)
  31. I. Shivakumar. Phys. Rev. Lett., 101, 055504 (2008)
  32. H. Chen, L. Yang, J. Long. Superlat. Microst., 79, 156 (2014)
  33. M.A. Blanco, E. Francisco, V. Luana. Comput., Phys. Commun., 158, 57 (2004)
  34. E. Francisco, M.A. Blanco, G. Sanjurjo. Phys. Rev. B, 63, 385 (2001).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.