Вышедшие номера
Исследование конструктивно-технологических особенностей изготовления малошумящих GaAs-транзисторов с длиной T-затвора 150 нм для систем передачи информации
Шестериков А.Е.1, Шестерикова Д.А.1, Ерофеев Е.В.1
1Томский государственный университет систем управления и радиоэлектроники, Томск, Россия
Email: shesterikov.a.e@mail.ru
Поступила в редакцию: 16 января 2024 г.
В окончательной редакции: 18 апреля 2024 г.
Принята к печати: 18 апреля 2024 г.
Выставление онлайн: 7 июля 2024 г.

Представлены результаты исследования конструктивно-технологических особенностей изготовления малошумящих транзисторов для систем передачи информации. С помощью программного комплекса Synopsys TCAD Technology Computer-Aided Design были определены оптимальные параметры слоев гетероструктуры при мольной доле индия, равной 20%, толщине барьерного слоя 18 нм, толщине канального слоя 12 нм и концентрации дельта легирования 5·1012 см-2. Было проведено исследование влияния длины рецесса подзатворной области GaAs-транзисторов на их электрические характеристики. Установлено, что с увеличением длины рецесса происходит увеличение пробивных напряжений затвор-сток транзистора. Выявлено, что дополнительная жидкостная обработка перед осаждением диэлектрика уменьшает удельную плотность тока стока и крутизну вольт-амперной характеристики, но позволяет увеличить напряжение пробоя затвор-сток транзисторов. Ключевые слова: pHEMT, малошумящий транзистор, углубление затвора, МИС, моделирование, гетероструктура.
  1. A. Chaturvedi. Materials Today: Proceedings, 37, 1567 (2021). https://doi.org/10.1016/j.matpr.2020.07.158
  2. A.S. Adonin, A.Yu. Evgrafov, Yu.V. Kolkovskii, V.M. Minnebaev. Russ. Microelectron., 50, 197 (2021). https://doi.org/10.1134/S1063739721020025
  3. M.A. Alim, A.A. Rezazadeh. Solid-State Electron., 132, 24 (2017). https://doi.org/10.1016/j.sse.2017.03.001
  4. N. Haris, P.B.K. Kyabaggu, M.A. Alim, A.A. Rezazadeh. 11th Eur. Microwave Integrated Circuits Conf. (EuMIC), (3-5 Octоber, London, United Kingdom), 169 (2016)
  5. D.Y. Protasov, D.V. Dmitriev, K.S. Zhuravlev, G.I. Ayzenshtat, A.Y. Yushchenko, A.B. Pashkovsky. Mater. Sci. Semicond. Process., 153, 107148 (2023). https://doi.org/10.1016/j.mssp.2022.107148
  6. K.K. Abgaryan, V.A. Kharchenko. Russ. Microelectron., 46, 564 (2017). https://doi.org/10.1134/S1063739717080029
  7. F. Thome, F. Heinz, A. Leuther. IEEE Microwave and Wireless Components Lett., 30, 11, 1089 (2020). https://doi.org/10.1109/LMWC.2020.3025674
  8. K.S. Zhuravlev, D.Yu. Protasov, A.K. Bakarov, A.I. Toropov, D.V. Gulyaev, V.G. Lapin, V.M. Lukashin, A.B. Pashkovskii. Optoelectron. Instrum. Proc., 56 (5), 478 (2020). https://doi.org/10.3103/S8756699020050155
  9. A. Leuther, M. Ohlrogge, L. Czornomaz, T. Merkle, F. Bernhardt, A. Tessmann. 12th Eur. Microwave Integrated Circuits Conf. (EuMIC), (Nuremberg, Germany), 130 (2017). https://doi.org/10.23919/EuMIC.2017.8230677
  10. M. Squartecchia, T.K. Johansen, J-Y. Dupuy, V. Nodjiadjim, V. Midili, M. Riet, A. Konczykowska. Microwave Opt. Technol. Lett., 61 (2), 550 (2019). https://doi.org/10.1002/mop.31558
  11. M.A. Alim, A.A. Rezazadeh. IEEE Trans. Electron Dev., 64 (4), 1511 (2017). https://doi.org/10.1109/TED.2017.2658685
  12. Y.S. Lin, B.Y. Chen. Microelectron. Eng., 214, 100 (2019). https://doi.org/10.1016/j.mee.2019.04.028
  13. Y.Q. Chen, Y.C. Zhang, Y. Liu, X.Y. Liao, Y.F. En, W.X. Fang, Y. Huang. IEEE Trans. Electron Dev., 65 (4), 1321 (2018). https://doi.org/10.1109/TED.2018.2803443
  14. H. Mehdi, F. Reveret, C. Robert-Goumet, L. Bideux, B. Gruzza, P.E. Hoggan, J. Leymarie, Y. Andre, E. Gil, B. Pelissier, T. Levert, D. Paget, G. Monier. Appl. Surf. Sci., 579, 152191 (2022). https://doi.org/10.1016/j.apsusc.2021.152191
  15. Y.S. Lin, C.C. Lin. Sci. Adv. Mater., 13(4), 638 (2021). https://doi.org/10.1166/sam.2021.3928
  16. Yu-S. Lin, J-J. Huang. J. Korean Phys. Soc., 79, 828 (2021). https://doi.org/10.1007/s40042-021-00299-5
  17. X. Zou, C. Li, X. Su, Y. Liu, D. Finkelstein-Shapiro, W. Zhang, A. Yartsev. ACS Appl. Mater. Interfaces, 12 (25), 28360 (2020). https://doi. org/10.1021/acsami.0c04892
  18. J. B. Hacker, J. Bergman, G. Nagy, G. Sullivan, C. Kadow, H.-K. Lin, A.C. Gossard, M. Rodwell, B. Brar. IEEE MTT-S Int. Microwave Symp. Digest., 1029 (2005). https://doi. org/10.1109/MWSYM.2005.1516844
  19. P.J. Riemer, B.R. Buhrow, J.D. Coker, B.A. Randall, R.W. Techentin, B.K. Gilbert, E.S. Daniel. IEEE MTT-S Int. Microwave Symp. Digest, 1037 (2005). https://doi. org/10.1109/MWSYM.2005.1516846
  20. D.P. Chang, I.B. Yom, S.H. Oh. Asia-Pacific Microwave Conf. Proc., 5, 4 (2005). https://doi. org/10.1109/APMC.2005.1607073

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.