"Физика и техника полупроводников"
Издателям
Вышедшие номера
Model development for current--voltage and transconductance characteristics of normally-off AlN/GaN MOSHEMT
Swain R.1, Jena K.1, Lenka T.R.1
1Microelectronics & VLSI Group, Department of Electronics & Communication Engineering, National Institute of Technology Silchar, Assam, India
Email: trlenka@gmail.com
Поступила в редакцию: 12 марта 2015 г.
Выставление онлайн: 19 февраля 2016 г.

In this paper, an AlN/GaN-based MOSHEMT is proposed, in accordance to this, a charge control model has been developed analytically and simulated with MATLAB to predict the characteristics of threshold voltage, drain currents and transconductance. The physics based models for 2DEG density, threshold voltage and quantum capacitance in the channel has been put forward. By using these developed models, the drain current for both linear and saturation models is derived. The predicted threshold voltage with the variation of barrier thickness has been plotted. A positive threshold voltage can be obtained by decreasing the barrier thickness which builds up the foundation for enhancement mode MOSHEMT devices. The predicted Id-Vgs, Id-Vds and transconductance characteristics show an excellent agreement with the experimental results and hence validate the model.
  • A.M. Dabiran, A.M. Wowchak, A. Osinsky, J. Xie, B. Hertog, B. Cui, D.C. Look, P.P. Chow. Appl. Phys. Lett., 93, 82 111 (2008)
  • T.R. Lenka, A.K. Panda. Semiconductors, 45 (9), 1211 (2011)
  • T.R. Lenka, A.K. Panda. Semiconductors, 45 (5), 660 (2011)
  • M. Miyoshi, M. Sakai, S. Arulkumaran, H. Ishikawa, T. Egawa, M. Tanaka, O. Oda. Jpn. J. Appl. Phys., 43 (12), 7939 (2004)
  • S. Hubbard, D. Pavlidis, V. Valiaev, A. Eisenbach. J. Electron. Mater., 31, 395 (2002)
  • P. Ye, B. Yang, K. Ng, J. Bude, G. Wilk, S. Halder, J. Hwang. Inter. J. High Speed Electronics and Systems, 14 (3), 791 (2004)
  • T. Huang, X. Zhu, K.M. Lau. IEEE Electron Devices Lett., 33 (8), 1123 (2012)
  • T. Huang, X. Zhu, K.M. Lau. IEEE Trans. Electron Devices, 60 (10), 3019 (2013)
  • S. Khandelwal, T.A. Fjeldly. Solid State Electron., 76, 60 (2012)
  • F.M. Yigletu, S. Khandelwal. IEEE Trans. Electron Devices, 60 (11), 3746 (2013)
  • D. Pandey, T.R. Lenka. Semiconductors, 49 (4), 524 (2015)
  • O. Ambacher, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, W.J. Schaff, L.F. Eastman. J. Appl. Phys., 85 (6), 3222 (1999)
  • S. Ganguly, J. Verma, G. Li, T. Zimmermann, H. Xing, D. Jena. Appl. Phys. Lett., 99, 193 504 (2011)
  • M. Tapajna, J. Kuzmi k. Appl. Phys. Lett., 100, 1135 091 (2012)
  • S. Kola, J.M. Golio, G.N. Maracas. IEEE Electron Device Lett., 9 (3), 136 (1988)
  • M. Li, Y. Wang. IEEE Trans. Electron Devices, 55 (1), 261 (2008)
  • X. Cheng, M. Li, Y. Wang. IEEE Trans. Electron Devices, 56 (12), 2881 (2009)
  • Y.Q. Tao, D.J. Chen, Y.C. Kong, B. Shen, Z.L. Xie, P. Han, R. Zhang, Y.D. Zheng. J. Electron. Mater., 35 (4), 722 (2006)
  • D.A. Deen, J.G. Champlain. Appl. Phys. Lett., 99, 53501 (2011)
  • S.M. Sze. Physics of Semiconductor Devices, 3rd edn. (John Wiley \& Sons, 2007)
  • Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

    Дата начала обработки статистических данных - 27 января 2016 г.