Velocity-direction dependent transmission coefficient of electron through potential barrier grown on anisotropic semiconductor
Chen Chun-Nan1, Chang Sheng-Hsiung2, Su Wei-Long3, Jen Jen-Yi1, Li Yiming4
1Quantum Engineering Laboratory, Department of Physics, Tamkang University, Tamsui, Taipei 251, Taiwan
2Department of Optoelectronic Engineering, Far-East University, Hsin-Shih Town, Tainan, Taiwan
3Department of Digital Mulitimedia Technology, Lee-Ming Institute of Technology, Tai-Shan, Taipei, Taiwan
4Department of Electrical Engineering, National Chiao Tung University, Hsinchu 300, Taiwan
Поступила в редакцию: 14 ноября 2011 г.
Выставление онлайн: 20 августа 2012 г.
In contrast to the usual wavevector dependent transition coefficients, the velocity-direction dependent transition coefficients of an incident electron are calculated. Through a potential barrier grown on anisotropic semiconductors, the transition coefficients of an incident electron are calculated in all valleys and incident-directions. In the anisotropic semiconductor, the mathematical expressions of the electron wavevector are also derived in the framework of the incident-angle and incident-energy parameters.
- N. Arora. MOSFET Modeling for VLSI Simulation: Theory and Practice (Workd Scientific Publishing, Singapore, 2007)
- A.B. Bhattacharyya. Compact MOSFET Modeling for VLSI Design (John Wiley\&Sons, Singapore, 2009)
- A. Rahman, J. Guo, S. Datta, M. Lundstrom. IEEE Trans. Electron. Dev., 50, 1853 (2003)
- J.H. Rhew and M.S. Lundstrom. J. Appl. Phys., 92, 5196 (2002)
- J. Wang and M. Lundstrom. IEEE Trans. Electron. Dev., 50, 1604 (2003)
- E.O. Kane. In: Semiconductors and Semimetals, ed. by R.K. Willardson, A.C. Beer (Academic Press, N. Y., 1966) v. 1, p. 75
- J. Luttinger, W. Kohn. Phys. Rev., 97, 869 (1955)
- J. Luttinger. Phys. Rev., 102, 1030 (1955)
- C.N. Chen. Phys. Rev. B, 72, 085 305 (2005)
- S. Datta. Superlatt. Microstr., 28, 253 (2000)
- Z. Ren, R. Venugopal, S. Goasguen, S. Datta, M.S. Lundstrom. IEEE Trans. Electron. Dev., 50, 1914 (2003)
- C.N. Chen, W.L. Su, M.E. Lee, J.Y. Jen, Yiming Li. Jpn. J. Appl. Phys., pt 2, 50, 060 201 (2011)
- K.Y. Kim, B. Lee. Phys. Rev. B, 58, 6728 (1998)
- K.Y. Kim, B. Lee, Superlatt. Microstr., 24, 389 (1998)
- R.A. Abram, M. Jaros. Band Structure Engineering in Semiconductor Microstucture (Plenum Press, N. Y., 1989)
- R.H. Henderson, E. Towe. J. Appl. Phys., 79, 2029 (1996)
- Y. Kajikawa. J. Appl. Phys., 86, 5663 (1999)
- J.H. Park, D. Kuzum, H.Y. Yu, K.C. Saraswat. IEEE Trans. Electron. Dev., 58, 2394 (2011)
- J. Zhuge, A.S. Verhulst, W.G. Vandeberghe, W. Dehaene, R. Huang, Y. Wang, G. Groeseneken. Semicond. Sci. Technol., 26, 085 001 (2011)
- J. Appenzeller, J. Knoch, M.T. Bjork, H. Riel, H. Schmid, W. Riess. IEEE Trans. Electron. Dev., 55, 2827 (2008)
- J. Guo, M.S. Lundstrom. IEEE Trans. Electron. Dev., 49, 1897 (2002)
- Q.T. Zhao, J.M. Hartmann, S. Mantl. IEEE Electron. Dev. Lett., 32, 1480 (2011)
- C.H. Shih, N.D. Chien. IEEE Electron. Dev. Lett., 32, 1498 (2011)
- K. Yamamoto, R. Ueno, T. Yamanaka, K. Hirayama, H. Yang, D. Wang, H. Nakashima. Appl. Phys. Express, 4, 051 301 (2011)
- N. Taoka, W. Mizubayashi, Y. Morita, S. Migita, H. Ota, S. Takagi. J. Appl. Phys., 108, 104 511 (2010)
- C.N. Chen. J. Appl. Phys., 97, 113 704 (2005)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.