Вышедшие номера
Investigation on high-kappa dielectric for low leakage AlGaN/GaN MIS-HEMT device, using material selection methodologies
Полная версия: 10.1134/S1063782618040073
Kumar Reddy Baikadi Pranay1, Ravi Teja Karri Babu1, Kandpal Kavindra1
1Department of Electrical & Electronics Engineering, Birla Institute of Technology and Science Pilani, Rajasthan, India
Email: kavindra.kandpal@pilani.bits-pilani.ac.in
Выставление онлайн: 20 марта 2018 г.

This paper analyzes various high-kappa dielectrics for low leakage AlGaN (Aluminium Gallium Nitride)/GaN (Gallium Nitride) MIS-HEMT (Metal Insulator Semiconductor - High Electron Mobility Transistor) device. The investigation is carried out by examining different attributes such as the dielectric constant, conduction band offset, and energy band gap of the dielectric which are crucial for a good dielectric-AlGaN interface. This work also computes the values of band offsets of different dielectrics to AlGaN analytically. The selection of the most promising dielectric is done using three different multi-criteria decision making methods (MCDM) namely the Ashby, VIKOR (VIseKriterijumska Optimizacija I Kompromisno Resenje in Serbian, meaning Multicriteria Optimization and Compromise Solution) and TOPSIS (Technique for Order Preference by Similarity to Ideal Solution). All the analyses point to La2O3 as the best gate dielectric for AlGaN/GaN MIS-HEMT device.
  1. M. Riordan. IEEE Spectrum, 41, 44 (2004)
  2. D. Guo et al. In: proc. 12th IEEE Intern. Conf. on Solid-State and Integrated Circuit Technology (ICSICT), Guilin, China, Oct., 28--31 Oct, 2014
  3. H.X. Guang, Z.D. Gang, J.D. Sheng. Chin. Phys. B, 24, 067301 (2015)
  4. W. Lu, L. Wang, S. Gu, D.P.R. Aplin, D.M. Estrada, P.K.L. Yu, P.M. Asbeck. IEEE Trans. Electron. Devices, 58, 1986 (2011)
  5. J. Chen, T. Kawanago, H. Wakabayashi, K. Tsutsui, H. Iwai, D. Nohata, H. Nohira, K. Kakushima. Microelectron. Reliab., 60, 16 (2016)
  6. M.V Hove, X. Kang, S. Stoffels, D. Wellekens, N. Ronchi, R. Venegas, K. Geens, S. Decoutere. IEEE Trans Electron Dev., 60, 3071 (2013)
  7. G. Ye, H. Wang, S. Arulkumaran, G.I. Ng, R. Hofstetter1, Y. Li, M.J. Anand, K.S. Ang, Y.K.T. Maung, S.C. Foo. In: proc. IEEE 71st Device Research Conf. (Notre Dame, United States, June 23--26, 2013)
  8. B.Y. Chou et al. IEEE Electron Dev. Lett., 35, 1091 (2014)
  9. C. Liao et al. IEEE Electron Dev. Lett., 36, 1284 (2015)
  10. L. Anojkumar, M. Ilangkumaran, V. Sasirekha. Expert Syst. Appl., 41, 2964 (2014)
  11. K. Kandpal, N. Gupta, J. Mater. Sci. Mater. Electron., 27, 5972 (2016)
  12. P. Sharma, N. Gupta. J. Mater. Sci. Mater. Electron., 26, 9607 (2015)
  13. L.M. Wang. In: proc. 25th Intern. Conf. on Microelectronics (MIEL 2006) (Belgrade, Serbia and Montenegro, May 14--17, 2006)
  14. H. Zhang, E. J. Miller, E.T. Yu. J. Appl. Phys., 99, 023703 (2006)
  15. D. Yan, H. Lu, D. Cao, D. Chen, R. Zhang, Y. Zheng. Appl. Phys. Lett., 97, 153503 (2010)
  16. S. Turuvekere, N. Karumuri, A.A. Rahman, A. Bhattacharya, A. DasGupta, N. DasGupta. IEEE Trans. Electron Dev., 60, 3157 (2013)
  17. J. Robertson. Eur. Phys. J. Appl. Phys., 28, 265291 (2004)
  18. R.L. Anderson. Solid State Electron., 5, 341 (1962)
  19. D.W. Niles, G. Margaritondo. Phys. Rev. B, 34, 2923 (1988)
  20. J. Robertson. J. Vac. Sci. Technol. B, 18, 1785 (2000)
  21. J. Robertson, B. Falabretti. J. Appl. Phys., 100, 014111 (2006)
  22. B.S. Eller, J. Yang, R.J. Nemanich. J. Vac. Sci. Technol. A, 31, 050807 (2013)
  23. S.P. Grabowski, M. Schneider, H. Nienhaus, W. Monch. R. Dimitrov, O. Ambacher, M. Stutzmann. Appl. Phys. Lett., 78, 2503 (2001)
  24. S.R. Lee, A.F. Wright, M.H. Crawford, G.A. Petersen, J. Han, R.M. Biefeld. Appl. Phys. Lett., 74, 3344 (1999)
  25. N. Nepal, J. Li, M.L. Nakarmi, J.Y. Lin, H.X. Jiang. Appl. Phys. Lett., 87, 242104 (2005)
  26. J. Sanghera, W. Kim, G. Villalobos, B. Shaw, C. Baker, J. Frantz, B. Sadowski, I. Aggarwal. Materials, 5, 258277 (2012)
  27. S.R. Skaggs. Zero and low coefficient of thermal expansion polycrystalline oxides (N LA-6918-MS. Los Alamos Scientific Lab., N. Mex., USA, 1977)
  28. V.B. Braginsky, A.A. Samoilenko. Phys. Lett. A, 315, 175177 (2003)
  29. R.V. Krishnan, G. Panneerselvam, P. Mankinandan, M.P. Antony, K. Nagarajan. J. Nucl. Radiochem. Sci., 10, 1926 (2009)
  30. Lorin E. Stevens. Thermo-Piezo-Electro-Mechanical Simulation of AlGaN (Aluminium Gallium Nitride) / GaN (Gallium Nitride) High Electron Mobility Transistor (2013) (Master's Thesis, Utah State University, Logan, Utah, 2013)
  31. M.F. Ashby. Acta Mater., 48, 1792 (2000)
  32. M.F. Ashby. Material Selection in Mechanical Design. 2nd edn. (Butterworth-Heinemann, Oxford, 2005)
  33. International Technology Roadmap for Semiconductors (ITRSs). Semiconductor Industry Association, 181 Metro Drive, Suite 450, San Jose, CA 95110 (2006)
  34. A.P. Huang, Z.C. Yang, P.K. Chu. In Hafnium-based high-kappa gate dielectrics, ed. by P.K. Chu [Advances in Solid State Circuits Technologies, 446] (INTECH, Rijeka, 2010)
  35. C. Hwang, K. Yoon. In: Multiple Attribute Decision Making Methods and Application Survey, 1st edn (Springer, Berlin, 2005) v. 181, p. 58--191
  36. S. Opricovic. Multi-criteria optimization of civil engineering systems (Faculty of Civil Engineering, Belgrade, 1998)
  37. C.L. Chang. Environ. Monit. Assess., 168, 339344 (2010)
  38. C.W. Lin, C.W. Yang, C.H. Chen, C.K. Lin, H.C Chiu. In: proc. Eur. Solid State Device Research Conf. (Athens, Greece, Sept. 14--18, 2009)
  39. S. Yang et al. IEEE Electron. Dev. Lett., 33, 979 (2012)
  40. Q. Lu et al. In: proc. Intern. Semiconductor Device Research Symp. (Washington, DC, USA, Dec. 5--7, 2001) p. 377--380
  41. K.P. Huang et al. IEEE Trans. Electron Dev., 63, 4273 (2016)
  42. L. Trojman. IEEE Lat. Am. Trans., 14, 4235 (2016)
  43. Y.C. Byun et al. J. Phys. D: Appl. Phys., 45, 435305 (2012)
  44. L.X. Qian, P.T. Lai, W.M. Tang. Appl. Phys. Lett., 104, 123505 (2014).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.