Room temperature de Haas-van Alphen effect in silicon nanosandwiches
Bagraev N.T.1,2, Grigoryev V.Yu.2, Klyachkin L.E.1, Malyarenko A.M.1, Mashkov V.A.2, Romanov V.V.2
1Ioffe Institute, Russian Academy of Sciences, St. Petersburg, Russia
2Peter the Great St. Petersburg Polytechnic University (SPbPU), St. Petersburg, Russia
Email: bagraev@mail.ioffe.ru
Поступила в редакцию: 21 января 2016 г.
Выставление онлайн: 20 июля 2016 г.
The negative-U impurity stripes confining the edge channels of semiconductor quantum wells are shown to allow the effective cooling inside in the process of the spin-dependent transport. The aforesaid also promotes the creation of composite bosons and fermions by the capture of single magnetic flux quanta at the edge channels under the conditions of low sheet density of carriers, thus opening new opportunities for the registration of quantum kinetic phenomena in weak magnetic fields at high temperatures up to the room temperature. As a certain version noted above, we present the first findings of the high temperature de Haas-van Alphen (300 K) and quantum Hall (77 K) effects in the silicon sandwich structure that represents the ultra-narrow, 2 nm, p-type quantum well (Si-QW) confined by the delta barriers heavily doped with boron on the n-type Si (100) surface. These data appear to result from the low density of single holes that are of small effective mass in the edge channels of p-type Si-QW because of the impurity confinement by the stripes consisting of the negative-U dipole boron centers which seems to give rise to the efficient reduction of the electron-electron interaction.
- Zyun F. Ezawa. Quantum Hall Effects: Recent Theoretical and Experimental Developments (World Scientific, Singapore, 2013)
- J.P. Eisenstein, H.L. Stormer, V. Narayanamurti, A.Y. Cho, A.C. Gossard, C.W. Tu. Phys. Rev. Lett., 55, 875 (1985)
- G. Landwehr, J. Gerschutz, S. Oehling, A. Pfeuffer-Jeschke, V. Latussek, C.R. Becker. Physica E, 6, 713 (2000)
- K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, M.I. Katsnelson, I.V. Grigorieva, S.V. Dubonos, A.A. Firsov. Nature, 438, 197 (2005)
- K.S. Novoselov, Z. Jiang, Y. Zhang, S.V. Morozov, H.L. Stormer, U. Zeitler, J.C. Maan, G.S. Boebinger, P. Kim, A.K. Geim. Science, 315 (5817), 1379 (2007)
- A.K. Geim, K.S. Novoselov. Nature Materials, 6, 183 (2007)
- M.Z. Hasan, C.L. Kane. Rev. Mod. Phys., 82, 3045 (2010)
- J. Klinovaja, P. Stano, A. Yazdani, D. Loss. Phys. Rev. Lett., 111, 186 805 (2013)
- A.A. Zyuzin, D. Loss. Phys. Rev. B, 90, 125 443 (2014)
- N. Bagraev, A. Bouravleuv, W. Gehlhoff, L. Klyachkin, A. Malyarenko, S. Rykov. Def. Dif. Forum, 194-199, 673 (2001)
- N.T. Bagraev, N.G. Galkin, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko. J. Phys.: Condens. Matter, 20, 164 2022 (2008)
- W. Gehlhoff, N.T. Bagraev, L.E. Klyachkin. Sol. St. Phenomena, 47-48, 589 (1995)
- N.T. Bagraev, L.E. Klyachkin, A.A. Kudryavtsev, A.M. Malyarenko, V.V. Romanov. In: Superconductor, ed. by A. Luiz (SCIYO, 2010) p. 69
- N.T. Bagraev, V.K. Ivanov, L.E. Klyachkin, I.A. Shelykh. Phys. Rev. B, 70, 155 315 (2004)
- N.T. Bagraev, E.S. Brilinskaya, D.S. Gets, L.E. Klyachkin, A.M. Malyarenko, V.V. Romanov. Semiconductors, 45, 1447 (2011)
- N.T. Bagraev, V.A. Mashkov, E.Yu. Danilovsky, W. Gehlhoff, D.S. Gets, L.E. Klyachkin, A.A. Kudryavtsev, R.V. Kuzmin, A.M. Malyarenko, V.V. Romanov. Appl. Magn. Reson., 39, 113, (2010)
- R.B. Laughlin. Phys. Rev. B, 23, 5632 (1981)
- R.B. Laughlin. Phys. Rev. B, 27, 3383 (1983)
- B.I. Halperin. Helvetica Physica Acta, 56, 75 (1983)
- V.T. Dolgopolov. Phys. Usp., 57, 105 (2014)
- E.V. Devyatov. Phys. Usp., 50, 197 (2007)
- K. von Klitzing, G. Dorda, M. Pepper. Phys. Rev. Lett., 45, 494 (1980)
- R. Willett, J.P. Eisenstein, H.L. Stormer, D.C. Tsui, A.C. Gossard, J.H. English. Phys. Rev. Lett., 59, 1776 (1987)
- M. Zazoui, S.L. Feng, J.C. Bourgoin. Phys. Rev. B, 44, 10 898 (1991)
- R.E. Peale, Y. Mochizuki, H. Sun, G D. Watkins. Phys. Rev. B, 45, 5933 (1992)
- H.Ch. Alt. Phys. Rev. Lett., 65, 3421 (1990)
- N.T. Bagraev. J. Phys. (France) I, 1, 1511 (1991).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.