"Физика и техника полупроводников"
Вышедшие номера
Synthesis and properties of Ge--Sb--S: NdCl3 glasses
Frumarova B.1, Nemec P.2, Fruman M.2, Oswald J.3
1Joint Laboratory of Solid State Chemistry, Czech Academy of Sciences and University of Pardubice
2Department of General of Inorganic Chemistry University of Pardubice, Pardubice, Czech Republic
3Institute of Physics, Czech Academy of Sciences, Prague, Czech Republic
Поступила в редакцию: 28 января 1998 г.
Выставление онлайн: 20 июля 1998 г.

High purity (GeS2)80-x(Sb2S3)20(NdCl3)x x=0, 0.01, 0.1, 0.5, glasses were prepared and their optical properties determined. The Ge--Sb--S system dissolves up to 0.5 mol.% of NdCl3 and still forms stable glasses. The sturcture of these glasses is formed by interconnected GeS4 tetrahedra and SbS3 pyramids as it follows from the Raman spectra. The glasses are optically well transparent in the range from 15400 cm-1 to 1000 cm-1. Doping with Nd creates new absorption bands which can be assigned to electron transfer from the 4I9/2 level to 2G5/2, 2G7/2, 2H11/2, 4F9/2, 4F7/2, 4S3/2, 2H9/2, 4F5/2, 4F3/2, 4I13/2 and 4I11/2 levels. The oscillator strengths and Judd-Ofelt parameters were evaluated. Their values are close to the values of these ones of Nd3+ in another chalcogenide hosts. The long-wavelength absorption edge was found near 1000 cm-1 and is due to multiphonon Ge--S and Sb--S vibrations. In doped glasses, several broad luminescence bands, near 890, 1080, 1370 and 1540 nm, were found, which can be assigned to the transitions from 4F3/2 to 4I9/2, to 4I11/2, to 4I13/2 and 4I15/2 electron levels. The first luminescence band was excited also by 1064 nm line and represents probably the upconversion of light.
  1. A.C. Propper, J.N. Carter, R.D.T. Lauder, D.C. Hanna, S.T. Davey, D. Szebesta. J. Opt. Soc. Amer. B; Opt. Phys., 11, 886 (1994)
  2. W.S. Brocklesby, A. Pearson. J. Luminesc., 59, 333 (1994)
  3. D.W. Hewak, R.S. Deol, J. Wang, G. Wylangowski, J.A. Mederios Neto, B.N. Samson, R.I. Laming, W.S. Brocklesby, D.N. Payne, A. Jha, M. Poulain, S. Otero, S. Surinach, M.D. Baro. Electron. Lett., 29, 237 (1993)
  4. D.R. Simons, A.J. Faber, H. De Waal. Proc. 8th Int. Symp. on Halide Glasses, Perros-Guirrec, France 1992 (CNET, Lannion, France 1992) p. 448
  5. B. Frumarova, J. Oswald, P. Krecmer, M. Frumar, V. Cerny, V. Smrcka. Opt. Mater., 6, 217 (1996)
  6. B. Frumarova, M. Frumar, J. Oswald. J. Non-Cryst. Sol., 213--214, 58 (1997)
  7. A. Belykh, L. Glebov, C. Lerminiaux, S. Sunter, M. Mikhailov, A. Pliukhin, M. Prassas, A. Przhevuskii. J. Non-Cryst. Sol., 213--214, 238 (1997)
  8. R.S. Deol, D.W. Hewak, S. Jordery, A. Jha, M. Poulain, M.D. Baro, D.N. Payne. J. Non-Cryst. Sol., 161, 257 (1993)
  9. H. Ebendorff-Heidepriem, W. Seeber, D. Ehrt. J. Non-Cryst. Sol., 183, 191 (1995)
  10. P. Nachimuthu, R. Jaganathan. Phys. Chem. Glasses, 36, 194 (1995)
  11. S.X. Cardoso, Y. Messaddeq, L.A.O. Nunes, M.A. Aegerter. J. Non-Cryst., Sol., 161, 277 (1993)
  12. M. Horak, D. Papuusek. Infrared Spectra and Structure of Molecules (Academia, Praha 1976) p. 254 (in Czech)
  13. M. Frumar, B. Petrova, V. Cerny, I. Pavlik. In: Advanced Solid State Chemisty, Materials Science Monographs, 60, ed. by M. Frumar, V. Cerny and L.Tichy (Elsevier, Amsterdam 1989) p. 401
  14. L. Koudelka, M. Frumar, M. Pisarcik. J. Non-Cryst., Sol., 41, 171 (1980)
  15. Z.V. Popovic. Phys. Lett., 94A, 2442 (1983)
  16. B.R. Judd. Phys. Rev., 127, 750 (1962)
  17. G.S. Ofelt. J. Chem. Phys., 37, 511 (1962)
  18. A.T. Stanley, E.A. Harris, T.M. Searle, J.M. Parker. J. Non-Cryst. Sol., 161, 235 (1993)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.