Вышедшие номера
First-principles calculations of the electronic and structural properties of GaSb
Castano-Gonzalez E.-E.1, Sena N.2, Mendoza-Estrada V.1, Gonzalez-Hernandez R.1, Dussan A.2, Mesa F.3
1Grupo de Investigacion en Fi sica Aplicada, Departamento de Fi sica, Universidad del Norte, Barranquilla-Colombia
2Departamento de Fi sica, Grupo de Materiales Nanoestructurados y sus Aplicaciones, Universidad Nacional de Colombia-Colombia, Bogota-Colombia
3Grupo NanoTech, Facultad de Ciencias Naturales y Matematicas, Universidad del Rosario, Bogota-Colombia
Email: rhernandezj@uninorte.edu.co
Поступила в редакцию: 3 февраля 2016 г.
Выставление онлайн: 19 сентября 2016 г.

In this paper, we carried out first-principles calculations in order to investigate the structural and electronic properties of the binary compound gallium antimonide (GaSb). This theoretical study was carried out using the Density Functional Theory within the plane-wave pseudopotential method. The effects of exchange and correlation (XC) were treated using the functional Local Density Approximation (LDA), generalized gradient approximation (GGA): Perdew-Burke-Ernzerhof (PBE), Perdew-Burke-Ernzerhof revised for solids (PBEsol), Perdew-Wang 91 (PW91), revised Perdew-Burke-Ernzerhof (rPBE), Armiento-Mattson 2005 (AM05) and meta-generalized gradient approximation (meta-GGA): Tao-Perdew-Staroverov-Scuseria (TPSS) and revised Tao-Perdew-Staroverov-Scuseria (RTPSS) and modified Becke-Johnson (MBJ). We calculated the densities of state (DOS) and band structure with different XC potentials identified and compared them with the theoretical and experimental results reported in the literature. It was discovered that functional: LDA, PBEsol, AM05 and RTPSS provide the best results to calculate the lattice parameters (a) and bulk modulus (B0); while for the cohesive energy (Ecoh), functional: AM05, RTPSS and PW91 are closer to the values obtained experimentally. The MBJ, Rtpss and AM05 values found for the band gap energy is slightly underestimated with those values reported experimentally.
  1. C.H. Fu, Y.H. Lin, W.C. Lee, T.D. Lin, R.L. Chu, L.K. Chu, P. Chang, M.H. Chen, W.J. Hsueh, S.H. Chen, G.J. Brown, J.I. Chyi, J. Kwo, M. Hong. Microelectronic Eng., 147 (1), 330 (2015)
  2. Zhang Lixue, Sun Weiguo, Xu Yingqiang, Zhang Lei, Zhang Liang, Si Junjie. Infr. Phys. Technol., 65, 129 (2014)
  3. Ye Hong, Shu Yue, Tang Liangliang. Sol. Energy Mater. and Solar Cells, 125, 268 (2014)
  4. Yang Guandong, Zhu Feng, DongShan. J. Cryst. Growth, 316 (1), 145 (2011)
  5. J.T. Vaughey, J. O'Hara, M.M. Thackeray. Electrochem. Solid-State Lett., 3 (1), 13 (2000)
  6. M. Morcrette, D. Larcher, J.M. Tarascon, K. Edstrom, J.T. Vaughey, M.M. Thackeray. Electrochimica Acta, 52, 5339 (2007)
  7. E. Dynowska, J. Bak-Misiuk, P. Romanowski, J.Z. Domagala, J. Sadowski, T. Wojciechowski, S. Kret, B. Kurowska, A. Kwiatkowski, W. Caliebe. Rad. Phys. Chem., 80, 1051 (2011)
  8. A. Wolska, M.T. Klepka, K. Lawniczak-Jablonska, J. Sadowski, A. Reszka, B.J. Kowalski. Rad. Phys. Chem., 80, 1026 (2011)
  9. Sun Wei-Feng, Li Mei-Cheng, Zhao Lian-Cheng. Superlat. Microstr., 49, 81 (2011)
  10. N. Liu, G.Y. Gao, J.B. Liu, K.L. Yao. Computational Mater. Sci., 95, 557 (2014)
  11. N. Liu, G.Y. Gao, J.B. Liu, K.L. Yao. Physica B: Condens. Matter, 405, 1663 (2010)
  12. D. Varshney, G. Joshi, M. Varshney, Swarna Shriya, G. Kresse, J. Hafner. Phys. Rev. B, 49, 14251 (1994)
  13. J.P. Perdew, A. Zunger. Phys. Rev. B, 23, 5048 (1981)
  14. J.P. Perdew, K. Burke, M. Emzerhof. Phys. Rev. Lett., 77, 3865 (1996)
  15. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke. Phys. Rev. Lett., 100, 136406 (2008)
  16. J.P. Perdew, J.A. Chevary, S.H. Vosko, K.A. Jackson, M.R. Pederson, D.J. Singh, C. Fiolhais. Phys. Rev. B, 46, 6671 (1992)
  17. B. Hammer, L.B. Hansen, J.K. Norskov. Phys. Rev. B, 59, 7413 (1999)
  18. J. Tao, J.P. Perdew, V.N. Staroverov, G.E. Scuseria, Phys. Rev. Lett., 91, 146401 (2005)
  19. P. Scharoch, M. Winiarski, Computer Phys. Commun., 184, 2680 (2013)
  20. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, L.A. Constantin, J.W. Sun. Erratum, 106, 179902 (2011)
  21. F. Tran, P. Blaha. Phys. Rev. Lett. 102, 226401 (2009)
  22. F.D. Murnaghan. Proc. National Academy Science, 30, 244 (1944)
  23. R. Ahmed, F. Aleem, S. Javad, H. Rashid, H. Akbarzadeh. Theor. Phys., 52, 527 (2009)
  24. N.N. Sirota, F.M. Gololobov. Dokl. Akad. Nauk SSSR, 144, 398 (1962)
  25. A.H. Reshak. Eur. Phys. J. B, 47, 503 (2005)
  26. T.C. McGlinn, T.N. Krabach, M.V. Klein, G. Bajor, J.E. Greene, B. Kramer, S.A. Barnett, A. Lastras, S. Gorbatkin. Phys. Rev. B, 33, 8396 (1986)
  27. K. Aoki, E. Anastassakis, M. Cardona. Phys. Rev. B, 30, 681 (1984)
  28. S. Kotochigova, Z.H. Levine, E.L. Shirley, M.D. Stiles, C.W. Clark. Phys. Rev. A, 55, 191 (1997).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.