Вышедшие номера
Enhancement of low temperature electron mobility due to an electric field in an InGaAs/InAlAs double quantum well structure
Sahu T.1, Palo S.2, Nayak P.K.3, Sahoo N.4
1Department of Electronics and Communication Engineering, National Institute of Science and Technology, Berhampur-761 008, Odisha, India
2Department of ECE, Kalam Institute of Technology, Berhampur, Odisha
3Department of ECE, SMIT, Berhampur, Odisha
4Department of Electronic Science, Berhampur University, Berhampu, India
Поступила в редакцию: 11 сентября 2013 г.
Выставление онлайн: 19 сентября 2014 г.

The effect of external electric field F on multisubband electron mobility mu in an In0.53Ga0.47As/In0.52Al48As double quantum well structure is analyzed. We consider scatterings due to ionized impurities, interface roughness and alloy disorder to analyze mu. The variation of scattering mechanisms as a function of F for different structure parameters shows interesting results through intersubband interactions. For small well widths, the mobility is governed by interface roughness scattering. When two subbands are occupied, the effect of impurity scattering gets enhanced through intersubband interactions. Our results of enhancement in mobility as a function of F, can be utilized for low temperature devices.
  1. B.O. Lim, M.K. Lee, T.J. Baek, M. Han, S.C. Kim, J.K. Rhee. IEEE Electron Dev. Lett., 28, 546 (2007)
  2. M.P. Pires, C.L. De Souza, B. Yavich, R.G. Pereira, W. Caevalho. J. Light Wave Technol., 18, 598 (2000)
  3. Z. Xu, C. Wong, W. Qi, Z. Yuan. Optics Lett., 35, 736 (2010)
  4. T. Ando, A.B. Fowler, F. Stern. Rev. Mod. Phys., 54, 437 (1982)
  5. R. Fletcher, E. Zaremba, M.D. Iorid, C.L. Foxon, J.J. Harris. Phys. Rev. B, 41, 10 649 (1990)
  6. G.Q. Hai, N. Studart, F.M. Peeters. Phys. Rev. B, 52, 8363 (1995)
  7. T. Sahu, K.A. Shore. Semicond. Sci. Technol., 24, 095 021 (2009)
  8. S.K. Lyo. J. Phys. Condens. Matter, 13, 1259 (2001)
  9. J.M. Li, J.J. Wu. XX. Han, Y.W. Lu, X.L. Liu, Q.S. Zhu, Z.G. Wang. Semicond. Sci. Technol., 20, 1207 (2005)
  10. P.K. Subudhi, S. Palo, T. Sahu. Superlat. Microstr., 51, 430 (2012)
  11. P.K. Basu, D. Raychaudhury. J. Appl. Phys., 68, 3443 (1990)
  12. F.M.S. Lima, A.L.A. Fonseca, O.A.C. Nunes. J. Appl. Phys., 92, 5296 (2002)
  13. T. Sahu, K.A. Shore. J. Appl. Phys., 107, 113 708 (2010)
  14. T. Sahu, S. Palo, N. Sahoo. Physica E, 46, 155 (2012)
  15. T. Sahu, N. Sahoo, A.K. Panda. Superlat. Microstr., 61, 50 (2013)
  16. Y. Ando, T. Itoh. J. Appl. Phys., 61, 1497 (1987)
  17. S. Tsujino, A. Borak, E. Muller, M. Scheinert, C.V. Falub, H. Sigg, D. Grutzmacher, M. Giovannini, J. Faist. Appl. Phys. Lett., 86, 062 113 (2005)
  18. K. Inoue, T. Matsuno. Phys. Rev. B., 47, 3771 (1993)
  19. A. Vasanelli, A. Leuliet, C. Sirtori, A. Wade, G. Fedorov, D. Smirnov, G. Bastard, B. Vinter, M. Giovannini, J. Faist. J. Appl. Phys. Lett., 89, 172 120 (2005)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.