Вышедшие номера
Comparative investigation of InP/InGaAs heterostructure-emitter tunneling and superlattice bipolar transistors
Tsai Jung-Hui1, Lee Ching-Sung2, Chiang Chung-Cheng1, Chao Yi-Ting1
1Department of Electronic Engineering, National Kaohsiung Normal University, Kaohsiung 802, TAIWAN
2Department of Electronic Engineering, Feng Chia University, Taichung 407, Taiwan
Поступила в редакцию: 11 сентября 2013 г.
Выставление онлайн: 20 мая 2014 г.

In this article, the characteristics of InP/InGaAs heterostructure-emitter bipolar transistors with 30 Angstrem, 50 Angstrem n-InP layer tunneling layers and a five-period InP/InGaAs superlattice are demonstrated and comparatively investigated by experimentally results and analysis. In the three devices, a 200 Angstrem n-In0.53Ga0.47As layer together with an n-InP tunneling emitter layer (or n-InP/n-InGaAs superlattice) forms heterostructure emitter to decrease collector-emitter offset voltage. The results exhibits that the largest collector current and current gain are obtained for the tunneling transistor with a 30 Angstrem n-InP tunneling emitter layer. On the other hand, some of holes injecting from base to emitter will be blocked at n-InP/n-InGaAs heterojunction due to the relatively small hole transmission coefficient in superlattice device, which will result in a considerable base recombination current in the n-InGaAs layer. Therefore, the collector current and current gain of the superlattice device are the smallest values among of the devices.
  1. G. Pitz, H.L. Hartnagel, K. Mause, F. Fiedler, D. Briggmann, Sol. St. Electron., 35, 937 (1992)
  2. J.L. Benchimol, J. Mba, A.M. Duchenois, B. Sermage, P. Launay, D. Caffin, M. Meghelli, M. Juhelm. J. Cryst. Growth, 188, 349 (1998)
  3. W.K. Huang, S.C. Huang, Y.M. Hsin, J.W. Shi, Y.C. Kao, J.M. Kuo. IET Optoelectron., 2, 6 (2008)
  4. Y.Z. Xiong, G.I. Ng, H. Wang, J.S. Fu. IEEE Trans. Electron Dev., 48, 2192 (2001)
  5. S.R. Bahl, N. Moll, V.M. Robbins, H.C. Kuo, B.G. Moser, G.E. Stillman. IEEE Electron. Dev. Lett., 21, 332 (2000)
  6. J.H. Tsai, C.H. Huang, Y.C. Ma, Y.R. Wu. Semiconductors, 46, 1539 (2012)
  7. J.J. Liou, C.S. Ho, L.L. Liou, C.I. Huang. Sol. St. Electron., 36, 819 (1993)
  8. Y.S. Lin, J.J. Jiang. IEEE Trans. Electron Dev., 56, 2945 (2009)
  9. J.H. Tsai, W.S. Lour, Y.T. Chao, S.S. Ye, Y.C. Ma, J.C. Jhou, Y.R. Wu, J.J. Ou-Yang. Thin Sol. Films, 521, 172 (2012)
  10. M. Mohiuddin, T. Tauqeer, J. Sexton, R. Knight, M. Missous. IEEE Trans. Electron. Dev., 57, 3340 (2010)
  11. C.Y. Chen, S.Y. Cheng, W.H. Chiou, H.M. Chuang, W.C. Liu. IEEE Electron. Dev. Lett., 24, 126 (2003)
  12. J.H. Tsai, C.S. Lee, W.S. Lour, Y.C. Ma, S.S. Ye. Semiconductors, 45, 646 (2011)
  13. M.K. Tsai, S.W. Tan, Y.W. Wu, Y.J. Yang, W.S. Lour. IEEE Trans. Electron. Dev., 50, 303 (2003)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.