Сверхпроводящий источник шума для сверхнизких температур
Российский фонд фундаментальных исследований (РФФИ), Фундаментальные научные исследования, выполняемые молодыми учеными, обучающимися в аспирантуре, 20-37-90094
Министерство образования и науки Российской Федерации, Программа повышения конкурентоспособности НИТУ МИСиС (5-100), К2-2020-016
Ким Т.М.
1, Шитов С.В.
1,21Национальный исследовательский технологический университет "МИСиС", Москва, Россия
2Институт радиотехники и электроники им. В.А. Котельникова РАН, Москва, Россия
Email: kim.tatyana.mail@gmail.com, sergey3e@gmail.com
Поступила в редакцию: 1 июня 2021 г.
В окончательной редакции: 21 июля 2021 г.
Принята к печати: 12 сентября 2021 г.
Выставление онлайн: 18 октября 2021 г.
Сверхпроводящий источник шума работает при температурах <300 mK и содержит микромостик из гафния и сверхпроводящий туннельный переход из алюминия, включенные в общий копланарный волновод. Микромостик согласован с планарной антенной и реализует функцию оптического черного тела на частотах 600-700 GHz. Копланарная линия является выходом черного тела в диапазоне 1-2 GHz. Температура микромостика устанавливается в диапазоне 0.4-9 K и калибруется с использованием дробового шума туннельного перехода. Модуляция температуры каждого из источников контролируется независимо с помощью постоянного тока посредством перевода из сверхпроводящего в нормальное состояние с характерными временами <0.1 ms и тепловыделением ~ 1 μW. Ключевые слова: сверхпроводящий микромостик, сверхпроводящий туннельный переход, термодинамический шум, дробовой шум, шумовая термометрия.
- A.V. Merenkov, V.I. Chichkov, A.B. Ermakov, A.V. Ustinov, S.V. Shitov, IEEE Trans. Appl. Supercond., 28 (7), 1 (2018). DOI: 10.1109/TASC.2018.2827981
- B.H. Eom, P.K. Day, H.G. LeDuc, J. Zmuidzinas, Nature Phys., 8, 623 (2012). DOI: 10.1038/nphys2356
- A.V. Uvarov, S.V. Shitov, A.N. Vystavkin, Meas. Techn., 53 (9), 1047 (2010). DOI: 10.1007/s11018-010-9617-4
- Ph. Abbon, A. Delbart, M. Fesquet, C. Magneville, B. Mazeau, J.-P. Pansart, D. Yvon, L. Dumoulin, S. Marnieros, Ph. Camus, T. Durand, Ch. Hoffmann, Nucl. Instrum. Meth. Phys. Res. A, 575 (3), 412 (2007). DOI: 10.1016/j.nima.2007.02.094
- S. Masi, P. de Bernardis, A. Paiella, F. Piacentini, L. Lamagna, A. Coppolecchia, P.A.R. Ade, E.S. Battistelli, M.G. Castellano, I. Colantoni, F. Columbro, G. D'Alessandro, M. De Petris, S. Gordon, C. Magneville, P. Mauskopf, G. Pettinari, G. Pisano, G. Polenta, G. Presta, E. Tommasi, C. Tucker, V. Vdovin, A. Volpe, D. Yvon, J. Cosmol. Astropart. Phys., 2019 (7), 003 (2019). DOI: 10.1088/1475-7516/2019/07/003
- https://www.lakeshore.com/products/categories/ temperature-products/cryogenic-temperature-sensors
- V.Yu. Belitsky, V.P. Koshelets, I.L. Serpuchenko, M.A. Tarasov, L.V. Filippenko, S.V. Shitov, in Proc. of the 20th Eur. Microwave Conf. (IEEE, 1990), vol. 1, p. 816. DOI: 10.1109/EUMA.1990.336144
- H. Inoue, T. Noguchi, K. Kohno, J. Phys.: Conf. Ser., 234, 042014 (2010). DOI: 10.1088/1742-6596/234/4/042014
- L. Spietz, R.J. Schoelkopf, P. Pari, Appl. Phys. Lett., 89 (18), 183123 (2006). DOI: 10.1063/1.2382736
- B.S. Karasik, S.V. Pereverzev, D. Olaya, J. Wei, M.E. Gershenson, A.V. Sergeev, IEEE Trans. Appl. Supercond., 19 (3), 532 (2009). DOI: 10.1109/TASC.2009.2019426
- F.C. Wellstood, C. Urbina, J. Clarke, Phys. Rev. B, 49 (9), 5942 (1994). DOI: 10.1103/PhysRevB.49.5942
- G.L. Pollack, Rev. Mod. Phys., 41 (1), 48 (1969). DOI: 10.1103/RevModPhys.41.48
- D. Chouvaev, L. Kuzmin, M. Tarasov, Supercond. Sci. Technol., 12 (11), 985 (1999). DOI: 10.1088/0953-2048/12/11/386
- Cadence AWR [Электронный ресурс]. URL: https://www.awr.com/awr-software/products/awr-design-environment
- А.В. Меренков, С.В. Шитов, В.И. Чичков, А.Б. Ермаков, Т.М. Ким, А.В. Устинов, Письма в ЖТФ, 44 (13), 59 (2018). DOI: 10.21883/PJTF.2018.13.46328.17149 [A.V. Merenkov, S.V. Shitov, V.I. Chichkov, A.B. Ermakov, Т.М. Kim, A.V. Ustinov, Tech. Phys. Lett., 44 (7), 581 (2018). DOI: 10.1134/S106378501807012X]
- С.В. Шитов, Письма в ЖТФ, 37 (19), 88 (2011). [S.V. Shitov, Tech. Phys. Lett., 37 (10), 932 (2011). DOI: 10.1134/S1063785011100117]
- A.L. Woodcraft, M. Barucci, P.R. Hastings, L. Lolli, V. Martelli, L. Risegari, G. Ventura, Criogenics, 49 (5), 159 (2009). DOI: 10.1016/j.cryogenics.2008.10.024
- B.S. Karasik, C.B. McKitterick, T.J. Reck, D.E. Prober, IEEE Trans. Terahertz Sci. Technol., 5 (1), 16 (2015). DOI: 10.1109/TTHZ.2014.2370755
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.