Optical Properties and Structure of Indium Oxide Films Obtained Under Various Conditions of Magnetron Sputtering
Tikhii A.A.1, Nikolaenko Yu.M.2, Sviridova E.A.2,3, Zhikharev I.V.2
1Lugansk State Pedagogical University, Lugansk, Russia
2Donetsk Institute of Physics and Technology named after. A.A. Galkina, Donetsk, Russia
3Donbass National Academy of Construction and Architecture, Makeyevka, Russia
Email: ea0000ffff@mail.ru, nik@donfti.ru, ksvir@list.ru, izhikharev@mail.ru

PDF
In this paper we summarize the studies of the structural and optical properties of In2O3 films on Al2O3 (012) substrates obtained by dc magnetron sputtering. According to X-ray diffraction, deposition time effects on the position and half-width of the (222) peak of cubic In2O3. Ellipsometric measurements and analysis of optical transmission spectra show that films obtained at temperatures of 300oC or more have uniform optical properties, except the surface layer. The refractive index of films obtained at room temperature increases along the direction from the substrate to the surface. Annealing eliminates this inhomogeneity, reduces the observed band gap due to a decrease in the concentration of lattice defects, but do not effects on the true band gap. Keywords: indium oxide films, band gap, optical properties, X-ray diffraction, magnetron sputtering.
  1. A.A. Yousif, M.H. Hasan, J. Biosens. Bioelectron, 6, 1000192 (2015)
  2. J. Liu, W. Guo, F. Qu, C. Feng, C. Li, L. Zhu, J. Zhou, S. Ruan, W. Chen. Ceramics International, 40, 6685 (2014)
  3. A.A. Khalefa, J.M. Marei, H.A. Radwan, J.M. Rzaij. Digest J. Nanomater. Biostructures, 16, 197 (2021)
  4. D. Manno, M.D. Giulio, T. Siciliano, E. Filippo, A. Serra. J. Phys. D: Appl. Phys., 34, 2097 (2001)
  5. Yu.M. Nikolaenko, A.N. Artemov, Yu.B. Medvedev, N.B. Efros, I.V. Zhikharev, I.Yu. Reshidova, A.A. Tikhii, S.V. Kara-Murza. J. Phys. D: Appl. Phys., 49, 375302 (2016)
  6. S. Kaneko, H. Torii, M. Soga, K. Akiyama, M. Iwaya, M. Yoshimoto, T. Amazawa. Jpn. J. Appl. Phys., 51, 01AC02 (2012)
  7. S.K. Yadav, S. Das, N. Prasad, B.K. Barick, S. Arora, D.S. Sutar, S. Dhar. J. Vacuum Sci. Technol. A, 38, 033414 (2020)
  8. X. Du, J. Yu, X. Xiu, Q. Sun, W. Tang, B. Man. Vacuum, 167, 1 (2019)
  9. M. Nistor, W. Seiler, C. Hebert, E. Matei, J. Perriere. Appl. Surf. Sci., 307, 455 (2014)
  10. W. Seiler, M. Nistor, C. Hebert, J. Perriere. Solar Energy Mater. Solar Cells, 116, 34 (2013)
  11. M.Z. Jarzebski. Phys. Status Solidi A, 71, 13 (1982)
  12. H. Kim, C.M. Gilmore, A. Pique, J.S. Horwitz, H. Mattoussi, H. Murata, Z.H. Kafafi, D.B. Chrisey. J. Appl. Phys., 86, 6451 (1999)
  13. M. Higuchi, S. Uekusa, R. Nakano, K. Yokogawa. J. Appl. Phys., 74, 6710 (1993)
  14. Y. Shigesato, S. Takaki, T. Haranoh. J. Appl. Phys., 71, 3356 (1992)
  15. Yu.M. Nikolaenko, A.B. Mukhin, V.A. Chaika, V.V. Burkhovetskii. Techn. Phys., 55 (8), 1189 (2010)
  16. A.A. Tikhii, Yu.M. Nikolaenko, Yu.I. Zhikhareva, I.V. Zhikharev. In: 7th Int. Congress on Energy Fluxes and Radiation Effects (EFRE-2020 online): Abstracts (Tomsk, Publishing House of IAO SB RAS, 2020) p. 601
  17. A.A. Tikhii, Yu.M. Nikolaenko, Yu.I. Zhikhareva, I.V. Zhikharev. Opt. Spectrosc., 128 (10), 1667 (2020)
  18. A.A. Tikhii, Yu.M. Nikolaenko, Yu.I. Zhikhareva, A.S. Kornievets, I.V. Zhikharev. Semiconductors, 52, 320 (2018)
  19. V.A. Gritskikh, I.V. Zhikharev, S.V. Kara-Murza, N.V. Korchikova, T.V. Krasnyakova, Y.M. Nikolaenko, A.A. Tikhii, A.V. Pavlenko, Y.I. Yurasov. In: Advanced Materials Techniques, Physics, Mechanics and Applications [(Eds I.A. Parinov, S.-H. Chang, M.A. Jani), Springer Proceedings in Physics. V. 193 (Springer International Publishing AG., 2017) p. 55]
  20. A.A. Tikhii, V.A. Gritskikh, S.V. Kara-Murza, N.V. Korchikova, Yu.M. Nikolaenko, Yu.I. Zhikhareva, I.V. Zhikharev. In: European Materials Research Society Spring Meeting 2016 (E-MRS 2016) (Lille, France, 2016) L.P. 32. https://www.european-mrs.com/2016-spring-symposium-l- european-materials-research-society, date of access: July, 2023
  21. A.A. Tikhii, K.A. Svyrydova, Yu.I. Zhikhareva, I.V. Zhikharev. J. Appl. Spectrosc., 88 (5), 975 (2021)
  22. E. Kusano. Appl. Sci. Converg. Technol., 28 (6), 179 (2019)
  23. A. Schleife, M.D. Neumann, N. Esser, Z. Galazka, A. Gottwald, J. Nixdorf, R. Goldhahn, M. Feneberg. New J. Phys., 20, 053016 (2018)
  24. A. Walsh, J.L.F. Da Silva, S.-H. Wei, C. Korber, A. Klein, L.F.J. Piper, A. De Masi, K.E. Smith, G. Panaccione, P. Torelli, D.J. Payne, A. Bourlange, R.G. Egdell. Phys. Rev. Lett., 100, 167402 (2008)
  25. Y. Furubayashi, M. Maehara, T. Yamamoto. ACS Appl. Electron. Mater., 1, 1545 (2019)
  26. L. Gupta, A. Mansingh, P.K. Srivastava. Thin Sol. Films, 176, 33 (1989)
  27. N.M. Ravindra, P. Ganapathy, J. Choi. Infr. Phys.Technol., 50, 21 (2007).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru