Luminescence in p-i-n structures with compensated quantum wells
Adamov R. B.1, Melentev G. A. 1, Podoskin A. A. 2, Kondratov M.I.2, Grishin A. E.2, Slipchenko S. O.2, Sedova I. V.2, Sorokin S. V.2, Klimko G. V.2, Makhov I. S. 3, Firsov D. A.1, Shalygin V.A.1
1Peter the Great Saint-Petersburg Polytechnic University, St. Petersburg, Russia
2Ioffe Institute, St. Petersburg, Russia
3High School of Economics, St. Petersburg, Russia
Email: shalygin@rphf.spbstu.ru

PDF
Photo- and electroluminescence in p-i-n structures with compensated GaAs/AlGaAs quantum wells have been studied. Two structures with different doping profiles were studied: with spatial separation of donors and acceptors (donors are localized in quantum wells, while acceptors are localized in barriers) and without it (both donors and acceptors are localized in quantum wells). The studies were carried out in the near-IR range at helium temperatures. Luminescence lines due to electron transitions from donor states to the first heavy-hole subband (D-hh1) and from the first electron subband to acceptor states (e1-A) have been identified. At large electric currents, the near-IR lasing due to these transitions was observed in the electroluminescence spectra. It has been found that the integrated lasing intensity related to the D-hh1 transitions in the structure without a spatial separation of donors and acceptors was three times higher than in the structure with the spatial separation. It is these transitions that ensure effective depletion of donor levels, which is important for the donor-assisted terahertz emission at e1-D electron transitions. The results of the work can be used in the development of electrically pumped terahertz emitters. Keywords: quantum wells, p-i-n structures, GaAs, AlAs, photoluminescence, electroluminescence, near-infrared range.
  1. M. Tonouchi. Nature Photonics, 1 (2), 97 (2007). https://doi.org/10.1038/nphoton.2007.3
  2. D.M. Mittleman. J. Appl. Phys., 122 (23), 230901 (2017). https://doi.org/10.1063/1.5007683
  3. A. Khalatpour, A.K. Paulsen, C. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photonics, 15 (1), 16 (2021). https://doi.org/10.1038/s41566-020-00707-5
  4. A. Khalatpour, M.C. Tam, S.J. Addamane, J. Reno, Z. Wasilewski, Q. Hu. Appl. Phys. Lett., 122 (16), 161101 (2023). https://doi.org/10.1063/5.0144705
  5. A.V. Andrianov, J.P. Gupta, J. Kolodzey, V.I. Sankin, A.O. Zakhar'in, Yu.B. Vasil'ev. Appl. Phys. Lett., 103 (22), 221101 (2013). https://doi.org/10.1063/1.4832824
  6. A.O. Zakhar'in, Y.B. Vasilyev, N.A. Sobolev, V.V. Zabrodskii, S.V. Egorov, A.V. Andrianov. Semiconductors, 51 (5), 604 (2017) http://dx.doi.org/10.21883/FTP.2017.05.44420.8432
  7. S.M. Li, W.M. Zheng, A.L. Wu, W.Y. Cong, J. Liu, N.N. Chu, Y.X. Song. Appl. Phys. Lett., 97 (2), 023507 (2010). https://doi.org/10.1063/1.3463467
  8. I.S. Makhov, V.Yu. Panevin, D.A. Firsov, L.E. Vorobjev, G.V. Klimko. J. Appl. Phys., 126 (17), 175702 (2019). https://doi.org/10.1063/1.5121835
  9. R.B. Adamov, A.D. Petruk, G.A. Melentev, I.V. Sedova, S.V. Sorokin, I.S. Makhov, D.A. Firsov, V.A. Shalygin. St. Petersburg State Polytechnical University Journal: Physics and Mathematics., 15 (4), 32 (2022). https://doi.org/10.18721/JPM.15402
  10. R.B. Adamov, G.A. Melentev, I.V. Sedova, S.V. Sorokin, G.V. Klimko, I.S. Makhov, D.A. Firsov, V.A. Shalygin. J. Luminesc., 266, 120302 (2024). https://doi.org/10.1016/j.jlumin.2023.120302
  11. D. Olego, M. Cardona. Phys. Rev. B, 22 (2), 886 (1980). https://doi.org/10.1103/PhysRevB.22.886
  12. M.S. Feng, C.S. Ares Fang, H.D. Chen. Mater. Chem. Phys., 42 (2), 143 (1995). https://doi.org/10.1016/0254-0584(95)01566-3
  13. S.V. Poltavtsev, R.I. Dzhioev, V.L. Korenev, I.A. Akimov, D. Kudlacik, D.R. Yakovlev, M. Bayer. Phys. Rev. B, 102 (1), 014204 (2020). https://doi.org/10.1103/PhysRevB.102.014204
  14. G. Bastard. Wave Mechanics Applied to Semiconductor Heterostructures (Les Ulis, Les Editions de Physique, 1988)
  15. A.E. Zhukov, N.Y. Gordeev, Y.M. Shernyakov, A.S. Payusov, A.A. Serin, M.M. Kulagina, S.A. Mintairov, N.A. Kalyuzhnyi, M.V. Maksimov. Technical Physics Letters, 44 (8), 675 (2018). http://dx.doi.org/10.21883/PJTF.2018.15.46439.17345
  16. A.V. Malevskaya, N.A. Kalyuzhnyy, F.Y. Soldatenkov, R.V. Levin, R.A. Salii, D.A. Malevskii, P.V. Pokrovskii, V.R. Larionov, V.M. Andreev. Technical Physics, 68 (1), 161 (2023). http://dx.doi.org/10.21883/JTF.2023.01.54078.166-22
  17. K.-K. Choi, B.F. Levine, C.G. Bethea, J. Walker, R.J. Malik. Appl. Phys. Lett., 50 (25), 1814 (1987). https://doi.org/10.1063/1.97706
  18. G. Bastard, J.A. Brum, R. Ferreira. Solid State Phys., 44, 229 (1991). https://doi.org/10.1016/S0081-1947(08)60092-2
  19. A.A. Podoskin, D.N. Romanovich, I.S. Shashkin, P.S. Gavrina, Z.N. Sokolova, S.O. Slipchenko, N.A. Pikhtin. Semiconductors, 53 (6), 828 (2019). http://dx.doi.org/10.21883/FTP.2019.06.47739.9058a
  20. A.A. Podoskin, D.N. Romanovich, I.S. Shashkin, P.S. Gavrina, Z.N. Sokolova, S.O. Slipchenko, N.A. Pikhtin. Semiconductors, 54 (5), 581 (2020). http://dx.doi.org/10.21883/FTP.2020.05.49266.9343

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru