Pashchenko A. S.
1,2, Devitsky O. V.
1,2, Lunina M. L.
11Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
2North-Caucasian Federal University, Stavropol, Russia
Email: as.pashchenko@gmail.com, v2517@rambler.ru, marinalschaz@gmail.com
Growth of a thin GaInAsBi film was carried out on a Si (001) substrate by pulsed laser deposition. The growth was carried out in the Volmer-Weber. The grains are preferentially monophase, but are separated by dislocation network, and in some areas, there are antiphase boundaries. Investigation of the real structure by transmission electron microscopy and X-ray diffractometry shows that stress relaxation occurred due to plastic shears by means of a nucleation of dislocations and a slip close-packed 111 planes, as well as twinning and a change in surface roughness. Using X-ray diffractometry, it was found that the GaInAsBi film has a lattice parameter of 5.856 Angstrem. The root-mean-square roughness of the film surface, measured by atomic force microscopy, was 0.51 nm. Keywords: III-V compounds, highly mismatched alloys, pulsed laser deposition, GaInAsBi, silicon.
- V. Pacebutas, B. Cechavicius, A. Krotkus. Infr. Phys. Technol., 111, 10567 (2020). https://doi.org/10.1016/j.infrared.2020.103567
- Y. Zhong, P. Dongmo, J. Zide. Dilute Bismuthides on an InP Platform. In: Bismuth-Containing Compounds, ed. by H. Li, Z. Wang. Springer Ser. Mater. Sci. (Springer, N. Y., 186, 2013). https://doi.org/10.1007/978-1-4614-8121-8_4
- V. Pacebutas, S. Stanionyte, R. Norkus, A. Bici\=unas, A. Urbanowicz, A. Krotkus. J. Appl. Phys., 125, 174507 (2019). https://doi.org/10.1063/1.5089855
- J. Devenson, V. Pacebutas, R. Butkute, A. Baranov, A. Krotkus. Appl. Phys. Exp., 5, 015503 (2012). https://doi.org/10.1143/APEX.5.015503
- V. Pacebutas, A. Urbanowicz, P. Cicenas, S. Stanionyte, A. Bici\=unas, I. Nevinskas, A. Krotkus. Semicond. Sci. Technol., 30 (9), 094012 (2015). https://doi.org/10.1088/0268-1242/30/9/094012
- T. Hepp, O. Mab meyer, D.A. Duffy, S.J. Sweeney, K. Volz. J. Appl. Phys., 126, 085707 (2019). https://doi.org/10.1063/1.5097138
- Q. Li, K.M. Lau. Prog. Cryst. Growth Charact. Mater., 63 (4), 105 (2017). https://doi.org/10.1016/j.pcrysgrow.2017.10.001
- Y. Hu, D. Liang, K. Mukherjee, Y. Li, C. Zhang, G. Kurczveil, X. Huang, R.G. Beausoleil. Light: Sci. Appl., 8, 93 (2019). https://doi.org/10.1038/s41377-019-0202-6
- I. Lucci, S. Charbonnier, L. Pedesseau, M. Vallet, L. Cerutti, J.-B. Rodriguez, E. Tournie, R. Bernard, A. Letoublon, N. Bertru, A. Le Corre, S. Rennesson, F. Semond, G. Patriarche, L. Largeau, P. Turban, A. Ponchet, C. Cornet. Phys. Rev. Mater., 2, 060401 (2018). https://doi.org/10.1103/PhysRevMaterials.2.060401
- A.R. Shugurov, A.V. Panin. Techn. Phys., 65, 1881 (2020). https://doi.org/10.1134/S1063784220120257
- G.A. Devenyi, S.Y. Woo, S. Ghanad-Tavakoli, R.A. Hughes, R.N. Kleiman, G.A. Botton, J.S. Preston. J. Appl. Phys., 110, 124316 (2011). https://doi.org/10.1063/1.3671022
- M. Volmer, A.Z. Weber. Zeitschrift Physik Chem., 119, 277 (1926)
- S.F. Fang, K. Adomi, S. Iyer, H. Morkoc, H. Zabel, C. Choi, N. Otsuka. J. Appl. Phys., 68 (7), R31 (1990). https://doi.org/10.1063/1.346284
- Y.H. Kim, Y.K. Noh, M.D. Kim, J.E. Oh, K.S. Chung. Thin Sol. Films, 518 (8), 2280 (2010). https://doi.org/10.1016/j.tsf.2009.09.120
- W. Walukiewicz, J.M.O. Zide. J. Appl. Phys., 127, 010401 (2020). https://doi.org/10.1063/1.5142248
- G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, Y. Horino. Jpn. J. Appl. Phys., 44, L1161 (2005). https://doi.org/10.1143/JJAP.44.L1161
- P. Ludewig, L. Nattermann, W. Stolz, K. Volz. Semicond. Sci. Techn., 30 (9), 094017 (2015). https://doi.org/10.1088/0268-1242/30/9/094017
- E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer, K. Volz. J. Cryst. Growth, 408, 71 (2014). https://doi.org/10.1016/j.jcrysgro.2014.09.006
- B.N. Zvonkov, I.A. Karpovich, N.V. Baidus, D.O. Filatov, S.V. Morozov, Yu.Yu. Gushina. Nanotechnology, 11, 221 (2000). https://doi.org/10.1088/0957-4484/11/4/306
- S. Martini, A.A. Quivy, M.J. da Silva, T.E. Lamas, E.C.F. da Silva, J.R. Leite, E. Abramof. J. Appl. Phys., 94, 7050 (2003). https://doi.org/10.1063/1.1621738
- L. Francaviglia, G. Tutuncuoglu, S. Marti-Sanchez, E. Di Russo, S.E. Steinvall, J.S. Ruiz, H. Potts, M. Fried, L. Rigutti, J. Arbiol, A. Fontcuberta i Morra. Phys. Rev. Mater., 3, 023001(R) (2019). https://doi.org/10.1103/PhysRevMaterials.3.023001
- R.R. Pel'a, L.K. Teles, M. Marques, S. Martini. J. Appl. Phys., 113, 033515 (2013). https://doi.org/10.1063/1.4776741
- A.S. Pashchenko, O.V. Devitsky, L.S. Lunin, I.V. Kasyanov, D.A. Nikulin, O.S. Pashchenko. Thin Sol. Films, 743, 139064 (2022). https://doi.org/10.1016/j.tsf.2021.139064
- N.A. Shepelin, Z.P. Tehrani, N. Ohannessian, C.W. Schneider, D. Pergolesi, T. Lippert. Chem. Soc. Rev., 52, 2294 (2023). https://doi.org/10.1039/d2cs00938b
- T.K.O. Vu, M.T. Tran, E.K. Kim. J. Alloys Compd., 924, 166531 (2022). https://doi.org/10.1016/j.jallcom.2022.166531
- V.A.S. Kandadai, V. Gadhamshetty, B.K. Jasthi. Surf. Coat. Techn., 447, 128805 (2022). https://doi.org/10.1016/j.surfcoat.2022.128805
- Chanchal, K. Jindal, A. Pandey, M. Tomar, P.K. Jha. Appl. Surf. Sci., 595, 153505 (2022). https://doi.org/10.1016/j.apsusc.2022.153505
- W.C. McGinnis, A. Hening. Thin Sol. Films, 764, 139603 (2023). https://doi.org/10.1016/j.tsf.2022.139603
- T.N. Van, E. Laborde, C. Champeaux, F. Dumas-Bouchiat, D.T. Quang, T.N. Vu, C.N. Xuan, D.T.H. Giang, T.P. Van. Appl. Surf. Sci., 619, 156756 (2023). https://doi.org/10.1016/j.apsusc.2023.156756
- C. Eisenmenger-Sittner. Growth Control and Thickness Measurement of Thin Films. In: Digital Encyclopedia of Applied Physics (Wiley-VCH Verlag GmbH \& Co., 2023). https://doi.org/10.1002/3527600434.eap809
- M. Ohring. Materials Science of Thin Films. Deposition and Structure. 2nd edn (Elsevier, Academic Press, 2002) p. 816]. https://doi.org/10.1016/B978-0-12-524975-1.X5000-9
- B. Pichaud, N. Burle, M. Texier, C. Alfonso, M. Gailhanou, J. Thibault-Penisson, C. Fontaine, V.I. Vdovin. Phys. Status Solidi C, 6 (8), 1827 (2009). https://doi.org/10.1002/pssc.200881469
- Q. Li, X. Zhou, C. W. Tang, K. M. Lau. IEEE Trans. Electron Dev., 60 (12), 4112 (2013). https://doi.org/10.1109/TED.2013.2283721
- P.J. Simmonds, M.L. Lee. J. Appl. Phys., 112, 054313 (2012). https://doi.org/10.1063/1.4749407
- F. Louchet, J. Thibault-Desseaux. Rev. Phys. Appl., 22, 207 (1987). https://doi.org/10.1051/rphysap:01987002204020700
- D. Hull, D.J. Bacon. Introduction to Dislocation. 5th edn (Butterworth-Heinemann, 2011) p. 85. https://doi.org/10.1016/B978-0-08-096672-4.00005-0
- M. Niewczas. Dislocations and Twinning in Face Centered Cubic Crystals. Ch. in book: Dislocations in Solids, ed. by J.P. Hirth and F.R.N. Nabarro (Elsevier, 2007) v. 13, p. 263. https://doi.org/10.1016/S1572-4859(07)80007-6
- W. Bollmann. Crystal Defects and Crystalline Interfaces (Springer Berlin, Heidelberg, 2012). https://doi.org/10.1007/978-3-642-49173-3
- L.B. Freund, S. Suresh. Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.