Defects in GaInAsBi Epitaxial Films on Si(001) Substrates
Pashchenko A. S. 1,2, Devitsky O. V. 1,2, Lunina M. L. 1
1Federal Research Center Southern Scientific Center of the Russian Academy of Sciences, Rostov-on-Don, Russia
2North-Caucasian Federal University, Stavropol, Russia
Email: as.pashchenko@gmail.com, v2517@rambler.ru, marinalschaz@gmail.com

PDF
Growth of a thin GaInAsBi film was carried out on a Si (001) substrate by pulsed laser deposition. The growth was carried out in the Volmer-Weber. The grains are preferentially monophase, but are separated by dislocation network, and in some areas, there are antiphase boundaries. Investigation of the real structure by transmission electron microscopy and X-ray diffractometry shows that stress relaxation occurred due to plastic shears by means of a nucleation of dislocations and a slip close-packed 111 planes, as well as twinning and a change in surface roughness. Using X-ray diffractometry, it was found that the GaInAsBi film has a lattice parameter of 5.856 Angstrem. The root-mean-square roughness of the film surface, measured by atomic force microscopy, was 0.51 nm. Keywords: III-V compounds, highly mismatched alloys, pulsed laser deposition, GaInAsBi, silicon.
  1. V. Pacebutas, B. Cechavicius, A. Krotkus. Infr. Phys. Technol., 111, 10567 (2020). https://doi.org/10.1016/j.infrared.2020.103567
  2. Y. Zhong, P. Dongmo, J. Zide. Dilute Bismuthides on an InP Platform. In: Bismuth-Containing Compounds, ed. by H. Li, Z. Wang. Springer Ser. Mater. Sci. (Springer, N. Y., 186, 2013). https://doi.org/10.1007/978-1-4614-8121-8_4
  3. V. Pacebutas, S. Stanionyte, R. Norkus, A. Bici\=unas, A. Urbanowicz, A. Krotkus. J. Appl. Phys., 125, 174507 (2019). https://doi.org/10.1063/1.5089855
  4. J. Devenson, V. Pacebutas, R. Butkute, A. Baranov, A. Krotkus. Appl. Phys. Exp., 5, 015503 (2012). https://doi.org/10.1143/APEX.5.015503
  5. V. Pacebutas, A. Urbanowicz, P. Cicenas, S. Stanionyte, A. Bici\=unas, I. Nevinskas, A. Krotkus. Semicond. Sci. Technol., 30 (9), 094012 (2015). https://doi.org/10.1088/0268-1242/30/9/094012
  6. T. Hepp, O. Mab meyer, D.A. Duffy, S.J. Sweeney, K. Volz. J. Appl. Phys., 126, 085707 (2019). https://doi.org/10.1063/1.5097138
  7. Q. Li, K.M. Lau. Prog. Cryst. Growth Charact. Mater., 63 (4), 105 (2017). https://doi.org/10.1016/j.pcrysgrow.2017.10.001
  8. Y. Hu, D. Liang, K. Mukherjee, Y. Li, C. Zhang, G. Kurczveil, X. Huang, R.G. Beausoleil. Light: Sci. Appl., 8, 93 (2019). https://doi.org/10.1038/s41377-019-0202-6
  9. I. Lucci, S. Charbonnier, L. Pedesseau, M. Vallet, L. Cerutti, J.-B. Rodriguez, E. Tournie, R. Bernard, A. Letoublon, N. Bertru, A. Le Corre, S. Rennesson, F. Semond, G. Patriarche, L. Largeau, P. Turban, A. Ponchet, C. Cornet. Phys. Rev. Mater., 2, 060401 (2018). https://doi.org/10.1103/PhysRevMaterials.2.060401
  10. A.R. Shugurov, A.V. Panin. Techn. Phys., 65, 1881 (2020). https://doi.org/10.1134/S1063784220120257
  11. G.A. Devenyi, S.Y. Woo, S. Ghanad-Tavakoli, R.A. Hughes, R.N. Kleiman, G.A. Botton, J.S. Preston. J. Appl. Phys., 110, 124316 (2011). https://doi.org/10.1063/1.3671022
  12. M. Volmer, A.Z. Weber. Zeitschrift Physik Chem., 119, 277 (1926)
  13. S.F. Fang, K. Adomi, S. Iyer, H. Morkoc, H. Zabel, C. Choi, N. Otsuka. J. Appl. Phys., 68 (7), R31 (1990). https://doi.org/10.1063/1.346284
  14. Y.H. Kim, Y.K. Noh, M.D. Kim, J.E. Oh, K.S. Chung. Thin Sol. Films, 518 (8), 2280 (2010). https://doi.org/10.1016/j.tsf.2009.09.120
  15. W. Walukiewicz, J.M.O. Zide. J. Appl. Phys., 127, 010401 (2020). https://doi.org/10.1063/1.5142248
  16. G. Feng, M. Yoshimoto, K. Oe, A. Chayahara, Y. Horino. Jpn. J. Appl. Phys., 44, L1161 (2005). https://doi.org/10.1143/JJAP.44.L1161
  17. P. Ludewig, L. Nattermann, W. Stolz, K. Volz. Semicond. Sci. Techn., 30 (9), 094017 (2015). https://doi.org/10.1088/0268-1242/30/9/094017
  18. E. Sterzer, N. Knaub, P. Ludewig, R. Straubinger, A. Beyer, K. Volz. J. Cryst. Growth, 408, 71 (2014). https://doi.org/10.1016/j.jcrysgro.2014.09.006
  19. B.N. Zvonkov, I.A. Karpovich, N.V. Baidus, D.O. Filatov, S.V. Morozov, Yu.Yu. Gushina. Nanotechnology, 11, 221 (2000). https://doi.org/10.1088/0957-4484/11/4/306
  20. S. Martini, A.A. Quivy, M.J. da Silva, T.E. Lamas, E.C.F. da Silva, J.R. Leite, E. Abramof. J. Appl. Phys., 94, 7050 (2003). https://doi.org/10.1063/1.1621738
  21. L. Francaviglia, G. Tutuncuoglu, S. Marti-Sanchez, E. Di Russo, S.E. Steinvall, J.S. Ruiz, H. Potts, M. Fried, L. Rigutti, J. Arbiol, A. Fontcuberta i Morra. Phys. Rev. Mater., 3, 023001(R) (2019). https://doi.org/10.1103/PhysRevMaterials.3.023001
  22. R.R. Pel'a, L.K. Teles, M. Marques, S. Martini. J. Appl. Phys., 113, 033515 (2013). https://doi.org/10.1063/1.4776741
  23. A.S. Pashchenko, O.V. Devitsky, L.S. Lunin, I.V. Kasyanov, D.A. Nikulin, O.S. Pashchenko. Thin Sol. Films, 743, 139064 (2022). https://doi.org/10.1016/j.tsf.2021.139064
  24. N.A. Shepelin, Z.P. Tehrani, N. Ohannessian, C.W. Schneider, D. Pergolesi, T. Lippert. Chem. Soc. Rev., 52, 2294 (2023). https://doi.org/10.1039/d2cs00938b
  25. T.K.O. Vu, M.T. Tran, E.K. Kim. J. Alloys Compd., 924, 166531 (2022). https://doi.org/10.1016/j.jallcom.2022.166531
  26. V.A.S. Kandadai, V. Gadhamshetty, B.K. Jasthi. Surf. Coat. Techn., 447, 128805 (2022). https://doi.org/10.1016/j.surfcoat.2022.128805
  27. Chanchal, K. Jindal, A. Pandey, M. Tomar, P.K. Jha. Appl. Surf. Sci., 595, 153505 (2022). https://doi.org/10.1016/j.apsusc.2022.153505
  28. W.C. McGinnis, A. Hening. Thin Sol. Films, 764, 139603 (2023). https://doi.org/10.1016/j.tsf.2022.139603
  29. T.N. Van, E. Laborde, C. Champeaux, F. Dumas-Bouchiat, D.T. Quang, T.N. Vu, C.N. Xuan, D.T.H. Giang, T.P. Van. Appl. Surf. Sci., 619, 156756 (2023). https://doi.org/10.1016/j.apsusc.2023.156756
  30. C. Eisenmenger-Sittner. Growth Control and Thickness Measurement of Thin Films. In: Digital Encyclopedia of Applied Physics (Wiley-VCH Verlag GmbH \& Co., 2023). https://doi.org/10.1002/3527600434.eap809
  31. M. Ohring. Materials Science of Thin Films. Deposition and Structure. 2nd edn (Elsevier, Academic Press, 2002) p. 816]. https://doi.org/10.1016/B978-0-12-524975-1.X5000-9
  32. B. Pichaud, N. Burle, M. Texier, C. Alfonso, M. Gailhanou, J. Thibault-Penisson, C. Fontaine, V.I. Vdovin. Phys. Status Solidi C, 6 (8), 1827 (2009). https://doi.org/10.1002/pssc.200881469
  33. Q. Li, X. Zhou, C. W. Tang, K. M. Lau. IEEE Trans. Electron Dev., 60 (12), 4112 (2013). https://doi.org/10.1109/TED.2013.2283721
  34. P.J. Simmonds, M.L. Lee. J. Appl. Phys., 112, 054313 (2012). https://doi.org/10.1063/1.4749407
  35. F. Louchet, J. Thibault-Desseaux. Rev. Phys. Appl., 22, 207 (1987). https://doi.org/10.1051/rphysap:01987002204020700
  36. D. Hull, D.J. Bacon. Introduction to Dislocation. 5th edn (Butterworth-Heinemann, 2011) p. 85. https://doi.org/10.1016/B978-0-08-096672-4.00005-0
  37. M. Niewczas. Dislocations and Twinning in Face Centered Cubic Crystals. Ch. in book: Dislocations in Solids, ed. by J.P. Hirth and F.R.N. Nabarro (Elsevier, 2007) v. 13, p. 263. https://doi.org/10.1016/S1572-4859(07)80007-6
  38. W. Bollmann. Crystal Defects and Crystalline Interfaces (Springer Berlin, Heidelberg, 2012). https://doi.org/10.1007/978-3-642-49173-3
  39. L.B. Freund, S. Suresh. Thin Film Materials: Stress, Defect Formation and Surface Evolution (Cambridge University Press, Cambridge, 2003).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru