Heterostructure of a 2.5 THz range quantum-cascade detector
Babichev A.V. 1, Kolodeznyi E.S. 1, Gladyshev A.G. 1, Denisov D.V.2, Jollivet A.3, Quach P.3, Karachinsky L. Ya. 1,4,5, Nevedomskiy V.N.4, Novikov I.I. 1,4,5, Tchernycheva M. 3, Julien F.H.3, Egorov A.Y. 5
1ITMO University, St. Petersburg, Russia
2St. Petersburg State Electrotechnical University “LETI", St. Petersburg, Russia
3Centre de Nanosciences et de Nanotechnologies (C2N), UMR CNRS, Universite Paris-Saclay, Palaiseau, France
4Ioffe Institute, St. Petersburg, Russia
5Connector Optics LLC, St. Petersburg, Russia
Email: a.babichev@mail.ioffe.ru

PDF
The design of the heterostructure of a 2.5 THz range quantum-cascade detector is proposed and heterostructure is grown by molecular-beam epitaxy technique. To optimize the thicknesses of the layers of the heterostructure cascades, a numerical method for iterative solution of the Schrodinger-Poisson equation in the k· p formalism was used. The grown heterostructure of the quantum-cascade detector showed a high structural perfection, confirmed by the small values of the average FWHM of the high-order satellite peaks on the X-ray diffraction rocking curves, which were (8.3±0.5)n. Analysis of dark-field images obtained by transmission electron microscopy showed that the total thickness of the layers in the cascade is (137.3±6.9) nm, which corresponds to the calculated thickness of the layers in the cascade of the heterostructure of the quantum-cascade detector. Keywords: superlattices, quantum-cascade detector, epitaxy, gallium arsenide
  1. L. Consolino, S. Bartalini, H. Beere, D. Ritchie, M. Vitiello, P. De Natale. Sensors, 13 (3), 3331 (2013)
  2. G.-R. Kim, T.-I. Jeon, D. Grischkowsky. Opt. Express, 25 (21), 25422 (2017)
  3. M. Locatelli, M. Ravaro, S. Bartalini, L. Consolino, M.S. Vitiello, R. Cicchi, F. Pavone, P. De Natale. Sci. Rep., 5 (1), 13566 (2015)
  4. N. Rothbart, O. Holz, R. Koczulla, K. Schmalz, H.-W. Hubers. Sensors, 19 (12), 2719 (2019)
  5. P.U. Jepsen, D.G. Cooke, M. Koch. Laser Photon. Rev., 5 (1), 124 (2010)
  6. A. Khalatpour, A.K. Paulsen, C. Deimert, Z.R. Wasilewski, Q. Hu. Nature Photonics, 15 (1), 16 (2020)
  7. A. Vardi, N. Kheirodin, L. Nevou, H. Machhadani, L. Vivien, P. Crozat, M. Tchernycheva, R. Colombelli, F.H. Julien, F. Guillot, C. Bougerol, E. Monroy, S. Schacham, G. Bahir. Appl. Phys. Lett., 93 (19), 193509 (2008)
  8. M. Hakl, Q. Lin, S. Lepillet, M. Billet, J.-F. Lampin, S. Pirotta, R. Colombelli, W. Wan, J.C. Cao, H. Li, E. Peytavit, S. Barbieri. ACS Photonics, 8 (2), 464 (2021).
  9. D. Palaferri, Y. Todorov, Y.N. Chen, J. Madeo, A. Vasanelli, L.H. Li, A.G. Davies, E.H. Linfield, C. Sirtori. Appl. Phys. Lett., 106 (16), 161102 (2015)
  10. H. Li, W.-J. Wan, Z.-Y. Tan, Z.-L. Fu, H.-X. Wang, T. Zhou, Z.-P. Li, C. Wang, X.-G. Guo, J.-C. Cao. Sci. Rep., 7 (1), 3452 (2017)
  11. B. Paulillo, S. Pirotta, H. Nong, P. Crozat, S. Guilet, G. Xu, S. Dhillon, L.H. Li, A.G. Davies, E.H. Linfield, R. Colombelli. Optica, 4 (12), 1451 (2017)
  12. P. Micheletti, J. Faist, T. Olariu, U. Senica, M. Beck, G. Scalari. APL Phot. Optica, 6, 106102 (2021)
  13. M. Graf, G. Scalari, D. Hofstetter, J. Faist, H. Beere, E. Linfield, D. Ritchie, G. Davies. Appl. Phys. Lett., 84 (4), 475 (2004)
  14. J. Popp, M. Haider, M. Franckie, J. Faist, C. Jirauschek. In: 2020 Int. Conf. on Numerical Simulation of Optoelectronic Devices (NUSOD) (Turin, Italy, 2020). doi: 10.1109/NUSOD49422.2020.9217784
  15. J. Popp, M. Haider, M. Franckie, J. Faist, C. Jirauschek. In: 2020 XXXIIIrd General Assembly and Scientific Symposium of the Int. Union of Radio Science (Rome, Italy, 2020). doi: 10.23919/URSIGASS49373.2020.9232167
  16. J. Popp, M. Haider, M. Franckie, J. Faist, C. Jirauschek. Opt. Quant. Electron., 53 (6), 287 (2021)
  17. link: https://www.nextnano.de/. Accepted date: 21.09.2021
  18. A.V. Babichev, V.V. Dudelev, A.G. Gladyshev, D.A. Mikhailov, A.S. Kurochkin, E.S. Kolodeznyi, V.E. Bougrov, V.N. Nevedomskiy, L.Y. Karachinsky, I.I. Novikov, D.V. Denisov, A.S. Ionov, S.O. Slipchenko, A.V. Lutetskiy, N.A. Pikhtin, G.S. Sokolovskii, A.Y. Egorov. Techn. Phys. Lett., 45 (7), 735 (2019)
  19. A.V. Babichev, A.S. Kurochkin, E.C. Kolodeznyi, A.V. Filimonov, A.A. Usikova, V.N. Nevedomsky, A.G. Gladyshev, L.Y. Karachinsky, I.I. Novikov, A.Y. Egorov. Semiconductors, 52 (6), 745 (2018)
  20. A.E. Zhukov, G.E. Cirlin, R.R. Reznik, Y.B. Samsonenko, A.I. Khrebtov, M.A. Kaliteevski, K.A. Ivanov, N.V. Kryzhanovskaya, M.V. Maximov, Z.I. Alferov. Semiconductors, 50 (5), 662 (2016)
  21. G.E. Cirlin, R.R. Reznik, A.E. Zhukov, R.A. Khabibullin, K.V. Maremyanin, V.I. Gavrilenko, S.V. Morozov. Semiconductors, 54 (9), 1092 (2020)
  22. H.E. Beere, J.R. Freeman, O.P. Marshall, C.H. Worrall, D. Ritchie. J. Cryst. Growth, 311 (7), 1923 (2009)
  23. X. Wang, C. Shen, T. Jiang, Z. Zhan, Q. Deng, W. Li, W. Wu, N. Yang, W. Chu, S. Duan. AIP Adv., 6 (7), 075210 (2016).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru