The control of charge and spin density localization in a double quantum dot at the edge of the topological insulator as the physical background of the qubit operations
Lavrukhina E. A.1, . Khomitsky D. V.2
1Physical and Technical Research Institute, National Research State University of Nizhny Novgorod, 603022 Nizhny Novgorod, Russia
2Nizhny Novgorod State University, Nizhny Novgorod, Russia
Email: ekaterina.a.lavrukhina@gmail.com
The methods of control of the spatial localization and spin polarization are studied for the model of double quantum dot at the edge of topological insulator based on HgTe/CdTe quantum well and formed by three magnetic barriers. The transitions in the spectrum induced by the resonance electric field are found for which the initial and final states correspond to the different spatial localization or to the specific sign of the chosen spin projection. Based on these transitions, the possibility of the information encoding is demonstrated for modeling of the coupled charged and spin qubits and for some of the qubit operations including the single-qubit NOT, Z and two-qubit CNOT. Keywords: topological insulator, magnetic barrier, double quantum dot, localization, charge qubit, spin qubit.
- X.-L. Qi, S.-C. Zhang. Rev. Mod. Phys., 83, 1057 (2011). DOI: 10.1103/RevModPhys.83.1057
- Z.D. Kvon, D.A. Kozlov, E.B. Olshanetsky, G.M. Gusev, N.N. Mikhailov, S.A. Dvoretsky. UFN, 190 (7), 673 (2020). (in Russian). DOI: 10.3367/UFNr.2019.10.038669
- M.A. Nielsen, I.L. Chuang. Quantum Computation and Quantum Information, 10th Anniversary edn (N.Y., Cambridge University Press, 2010) Chap. 1.3. DOI: 10.1017/CBO9780511976667
- C. Timm. Phys. Rev. B, 86, 155456 (2012). DOI: 10.1103/PhysRevB.86.155456
- G. Dolcetto, N. Traverso Ziani, M. Biggio, F. Cavaliere, M. Sassetti. Phys. Rev. B, 87, 235423 (2013). DOI: 10.1103/PhysRevB.87.235423
- G.J. Ferreira, D. Loss. Phys. Rev. Lett., 111, 106802 (2013). DOI: 10.1103/PhysRevLett.111.106802
- D.V. Khomitsky, E.A. Lavrukhina, A.A. Chubanov, N. Nzhiya. FTP, 51 (11), 1557 (2017). (in Russian). DOI: 10.21883/FTP.2017.11.45111.25
- D.V. Khomitsky, K.S. Kabaev, E.A. Lavrukhina. ZhETF, 158 (5), 929 (2020). (in Russian). DOI: 10.31857/S0044451020110152
- D.V. Khomitsky, A.A. Konakov, E.A. Lavrukhina. J. Phys.: Condens. Matter, 34, 405302 (2022). DOI: 10.1088/1361-648X/ac8407
- E.A. Lavrukhina, D.V. Khomitsky, A.V. Doleznikov. FTP, 57 (7), 551 (2023). (in Russian). DOI: 10.61011/FTP.2023.07.56788.4943C
- A. Rogalski. Rep. Progr. Phys., 68, 2267 (2005). DOI: 10.1088/0034-4885/68/10/R01
- V.Ya. Aleshkin, A.V. Germanenko, G.M. Miknov, A.A. Sherstobitov. Physica E, 128, 114606 (2021). DOI: 10.1016/j.physe.2020.114606
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.