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The methods of control of the spatial localization and spin polarization are studied for the model of double

quantum dot at the edge of topological insulator based on HgTe/CdTe quantum well and formed by three magnetic

barriers. The transitions in the spectrum induced by the resonance electric field are found for which the initial and

final states correspond to the different spatial localization or to the specific sign of the chosen spin projection. Based

on these transitions, the possibility of the information encoding is demonstrated for modeling of the coupled charged

and spin qubits and for some of the qubit operations including the single-qubit NOT, Z and two-qubit CNOT.
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1. Introduction

Topological insulators (TI), in particular two-dimensio-

nal TI based on HgTe/CdxHg1−xTe quantum wells [1,2]
have been experimentally and theoretically studied for

about 20 years. Many fundamental and applied results

have been obtained during this period, but progress in

their technological and instrumental applications is more

modest. This is partly due to the unique properties of

the edge states in TI, which are stable from scattering

by non-magnetic impurities and propagate over significant

distances, on the order of several microns, along the edge

of the sample [2]. At the same time, it turns out to

be much more difficult to construct compact objects of

the form of quantum dots (QDs) for subsequent use, in

particular in quantum computing problems [3]. This is

attributable to the difficulties in creating localized functions

from edge states in a purely electric field, while a magnetic

field destroys topological security. Nevertheless, theoretical

models of quantum dots with magnetic barriers have been

known for many years [4–6]. In our previous work, we

developed the models of single [7–9] and double [10]
QD with magnetic barriers of finite permeability based on

dielectric magnets. It was shown that there are a variable

number of discrete levels depending on the height and

orientation of the magnetization of the barriers [9], as well

as the presence of continuous spectrum states above the

barriers. The possibilities of controlling the populations of

discrete levels in a periodic electric field of were studied

in Ref. [8].
In this paper, we continue to study the model of

a double quantum dot on the TI edge based on the

HgTe/CdxHg1−xTe quantum well formed by three magnetic

barriers, which was started in Ref. [10]. The main emphasis

is placed on the control of spatial localization and the

associated spin polarization of states depending on the

orientation of the magnetization of the barriers. It is

shown that a change in the orientation of only one central

barrier can affect localization and spin polarization over

a wide range. Based on the predicted properties, we

propose encoding schemes for the states of two qubits in

the system under consideration. The first qubit can be

called a charge qubit, and spatial localization of the wave

function is used for encoding. The second qubit can be

called a spin qubit, and the spin projection is used for

encoding. The possibilities of organizing basic quantum

computing operations in such a qubit system, such as the

NOT and Z gates, as well as the two-qubit CNOT operation,

are discussed when the system is exposed to a resonant

electric field.

We limit ourselves to solving the problem within the

framework of the single-particle Schrodinger equation,

without including relaxation effects. Some estimates of such

effects were obtained earlier by us [7], others are given in

this paper. They say that at sufficiently low temperatures,

which are common for qubit systems (1K and lower), it

is possible to perform the operations under discussion. In

addition, our model allows you to switch between system

states (gates). as transitions between its various stationary

states for fixed system parameters. The results obtained

allow us to hope for the application of structures with a

double quantum dot at the edge of the TI, including in

quantum computing tasks.
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Figure 1. A model of a double quantum dot formed on the one-dimensional TI edge by magnetic barriers, described by the

Hamiltonian (1). L1, L2 — widths of quantum dots, Lb — width of the central barrier, M1, Mb , M2 — barrier heights in energy

units.

2. Model and properties of states

We use the model of double QD on the edge of TI

with HgTe/CdxHg1−xTe quantum well, developed by us

in Ref. [10]. In this model, we consider a sequence of three

magnetic barriers located at the TI edge, between which two

regions of quantum dots are formed, as shown in Figure 1.

The Hamiltonian of the system has the form

H = Akyσz − M1S
(

−L1 − y
)(

σx cos θ1 + σy sin θ1
)

− Mb

(

S(y) − S(y − Lb)
)(

σx cos θb + σy sin θb

)

− M2S
(

y − Lb − L2

)(

σx cos θ2 + σy sin θ2
)

. (1)

In (1), the first term Akyσz corresponds to the kinetic

energy of one-dimensional edge states in TI [1], where

the parameter A = 360meV · nm. The remaining terms de-

scribe the energy of interaction with three magnetic barriers

located in regions y < −L1, 0 < y < Lb and y > Lb + L2,

respectively, and having a profile described by the step

function S(y), as shown in Figure 1. The amplitudes of

interaction with barriers in energy units are M1, Mb, M2,

angles θ1, θb, θ2 set the orientation the magnetization of

the barriers in the plane (xy), where θ = 0 corresponds to

the orientation along the axis Ox in Figure 1. Boundary

conditions, wave functions, and the energy spectrum of

the Hamiltonian (1) discussed in Ref. [10]. It was also

shown that with mutually opposite orientations of the

magnetization of the extreme barriers θ1 = 0, θ2 = π,

depending on the orientation of the magnetization of the

central barrier, localization of the wave function occurs, as

shown in Figure 2, a for the ratio P of the contributions

of states in the left and right QD. Here, the orange color

means localization in the left QD at P ≫ 1, and blue —
in right QD at P ≪ 1. The scale in Figure 2, a does not

allow showing the small gaps that form at the intersection

points of the levels at θb = π/2, 3π/2, i. e., there is anti-

crossing in the spectrum [10].
The question arises about the effect on the electronic

spectrum shown in Figure 2, a and b of the Coulomb

interaction between particles corresponding to filled states

below the Fermi level when the polarization of the central

barrier changes. To estimate the energy order of the EC

Coulomb interaction, we use the expression

EC ∼ e2/(εL). (2)

In (2) L ∼ L1 ∼ L2 ∼ 100 nm is the distance between the

maxima of the wave function in the spectrum for states

closest to each other in the spectrum and located below the

Fermi level, which are shown in Figure 2, a. In terms of

the order of magnitude, L corresponds to the size of the

quantum dot L1(L2) [10]. The constant ε ∼ 20 is the low-

frequency permittivity of the bulk HgTe [11], which can

decrease by 10−20% in the HgTe quantum well depending

on the electron concentration [12]. We obtain EC ∼ 1meV

after substituting the specified parameters in (2). The

characteristic kinetic energy of the electrons in the spectrum

in Figure 2 is comparable to the energy of discrete states

and is of the order of En ∼ 5−15meV for most of the levels

used in our calculations. This means that the condition

EC/En ∼ 0.05−0.2 is fulfilled for the main fraction of

states, which allows, to a first approximation, not to take

into account the Coulomb interaction with states located

below the Fermi level. For subsequent approximations, this

account will already be required, which, however, is beyond

the scope of this work.

3. Encoding information and operations
with qubits in charge and spin
subsystems

The behavior of the function P, which describes the

localization of the wave function in Figure 2, a, suggests

the possibility of using states with certain localization

regions in left and right QD with a fixed orientation of the

magnetization θb of the central barrier as the basis of the

”
charge“ qubit for encoding information. As an example,

in Figure 2, a, the points a, b, c, d are marked, of which the

points a and c correspond to the localization of states in the
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Figure 2. a — localization function P depending on the energy E

and the magnetization angle of the central barrier θb for parameters

in (1) θ1 = 0, θ2 = π, L1, L2 and Lb = 100 nm, M1, M2 and

Mb = 20meV. The blue color corresponds to localization in

the right QD scan at P ≪ 1, orange — localization in left QD

at P ≫ 1; b — dependence of the average value of the spin

projection 〈Sx〉 on E and θb at the same parameters. For (a)
and (b) pairs of points a and b (or c and d) for a fixed θb ,

the answers are different localization and different sign 〈Sx 〉. The
encoding of the states of the system (3) of two coupled charge and

spin qubits is indicated next to the points.

left QD, and points b and d correspond to the localization

of states in the right QD. Their spatial localization allows

talking about the possibility of encoding states of the form
∣

∣0〉 and |1〉 for a charge or spatial qubit, where the state |0〉
is attributed to the values P ≫ 1, i. e. on the orange branch

of the spectrum, and the state of |1〉 is attributed to the

values of P ≪ 1, i. e., the blue branch of the spectrum. With

this approach, the points a and c in Figure 2, a correspond

to the same, i. e., the first state |0〉 of the charge qubit,

and the points b and d correspond to its second state

|1〉. The transition between these states is possible, for

example, when an electric field pulse is applied at the

resonant frequency ωac = Ea − Ec or ωbd = Eb − Ed [8],
depending on which QD the electron is localized in. It

should be noted that even if the frequencies ωac and ωbd

exactly match, transitions between these pairs of levels can

be induced independently, since the wave functions of the

initial and final states in each pair are localized at different

quantum dots. Accordingly, the localization of the electric

field causing the transitions in the region of a specific QD

will cause transitions between only one pair of levels.

The question arises — what are the properties of the

spin projections of the Hamiltonian states (1) and is it

also possible to use them to encode information. It is

known that the average value of the z -projection of spin

of a two-component spinor, which is an eigenfunction of

the Hamiltonian (1), is zero [9]. The other two projections

depend significantly on the energy and, as we will see, on

the spatial localization of the wave function. Figure 2, b

shows a graph of the distribution of the average value of

x -projections of spin 〈Sx 〉 (in units ~/2) for the same energy

levels and the same parameters that answers Figure 2, a.

From the comparison of Figure 2, a and b, it can be

concluded that the sign of 〈Sx 〉 can change in case of the

change of the spatial localization area of the wave function,

which corresponds to the transition between the orange and

blue branches in Figure 2, a. By analogy with encoding

information through spatial localization, we can repeat the

reasoning for encoding the states of the second,
”
spin“ qubit

in our system using the sign of the spin projection, for

example, 〈Sx 〉, the graph for which is shown in Figure 2, b.

The state |0〉 of this qubit can be attributed to the negative

values of the projection 〈Sx 〉, shown in shades of orange

in Figure 2, b. The state |1〉 of the spin qubit, respectively,

will correspond to the positive sign of the projection 〈Sx 〉,
shown in shades of green in Figure 2, b. Then the state

|0〉 will correspond to points a and d in Figure 2, b with the

same projection sign 〈Sx 〉, and the state |1〉 of the spin qubit

will correspond to points b and d, respectively.

The discussions conducted for the spatial localization

in Figure 2, a and for the spin projection 〈Sx 〉 in Figure 2, b

allow speaking about the description of two related subsys-

tems, charge and spin, which can be referred as a charge

qubit and a spin qubit. The following states of a two-

qubit system can be assigned using this language to the

points a, b, c, d in Figure 2, a and b, where the first position

corresponds to the charge qubit, and the second position

corresponds to the spin qubit:

a → |00〉; b → |11〉; c → |01〉; d → |10〉. (3)

First, we will discuss possible schemes for implementing

some single-qubit operations, taking into account enco-

ding (3), and then the two-qubit operation CNOT. These

operations can be performed by applying control pulses of

an electric field that cause transitions between the states of

the discrete spectrum in the QDs under consideration, as

discussed in Ref. [10]. In this paper, we will discuss only a

qualitative schematic diagram of such transitions.

3.1. Single-qubit operation NOT, charge qubit

This operation can be implemented with a resonant

transition between the levels a and b or c and d in Figure 2,

2 Semiconductors, 2025, Vol. 59, No. 6



322 XXIX International Symposium
”
Nanophysics and Nanoelectronics“

depending on the position of the Fermi level. The final state

must be free to ensure upward energy transitions, which can

be achieved by appropriately shifting the Fermi level when

the potentials of the control electrodes change.

3.2. Single-qubit operation NOT, spin qubit

This operation can be implemented similarly to the

previous one, only transitions must be performed at a

resonant frequency between pairs of levels a and c or b

and d in Figure 2. It should be noted that this time

the difference between the pairs of levels between which

transitions take place, in addition to the energy of the levels,

also consists in the different spatial localization of the wave

functions, which is explained by the different color of the

lines in Figure 2, a.

3.3. Single-qubit operations Z, charge

and spin qubits

The one-qubit operation Z consists of multiplying the

state vector from the left by the Pauli matrix σz , converting

the state α|a〉 + β|b〉 to the state α|a〉 − β|b〉. It is known

that it can be implemented for a two-tier system, i. e. for

both the charge and spin qubits, simply in the course of the

free evolution of the state [3]. Let us consider, for example,

the evolution of a linear combination of states |a〉 and
∣

∣c〉
forming the basis of a spin qubit in Figure 2, i. e., a function

of the form ψ(t = 0) = α|a〉 + β|c〉, where α and β are

arbitrary constants. Indeed, the energies of the states, for

example, at points a and c in Figure 2, a and b differ in

sign, i. e., Ea = E0 and Ec = −E0. If we select a time point

from the start of the countdown at tn = (π + 4πn)~/2E0,

where n = 0, 1, 2, . . . , then after taking out the total phase

multiplier, we get a combination in which the contribution of

the state |c〉 will differ by the phase π from the contribution

of the state a, i. e., we will have ψ(t = tn) = α|a〉 − β|c〉,
which is the implementation of the operation Z. Similar

arguments can be carried out for a linear combination of

states.a, d or b, c corresponding to the basis of the charge

qubit.

3.4. Two-qubit CNOT operation

As you know, the CNOT operation leaves a pair of

two-qubit states |00〉 and |01〉 unchanged, and the states

|10〉 and |11〉 swap [3]. In encoding (3), this means that

there should be no transition between the points a and c

in Figure 2, a and b, but the transition is implemented

between the points b and d. These pairs of points

correspond, according to Figure 2, a, to different spatial

localization of the wave function in left or in right QD,

respectively. It can be assumed that this transition can be

implemented under the condition that a control action, for

example, an alternating electric field, causing transitions

between states with different spin projections 〈Sx 〉 at a

resonant frequency ωbd = Eb − Ed , is localized in the region

of only the right QD, to which the pair the points b

and d correspond. This can be achieved by an appropriate

configuration of the control gates. In this case, when the

charge qubit is in the state |0〉 with the localization of the

wave function in the left QD, the transition between the

points a and c will not take place, since the field will not

affect the wave function. On the contrary, when the charge

qubit is in the state |1〉 with the localization of the wave

function in the right QD will transition between the points b

and d, i. e. between the states |0〉 and |1〉 of the spin qubit.

As a result, we will get the implementation of the CNOT

operation.

3.5. The switching speed of a spin qubit
in an external electric field

In conclusion, we will estimate the speed of the CNOT

operation for a spin qubit in a periodic electric field

with frequency, when a transition occurs between the

states a and c or b and d in Figure 2. Similar estimates

can be obtained for charge qubit operations. In the dipole

approximation for the geometry of our structure in Figure 1

the matrix element of the transition is the matrix element

of the coordinate operator y [8]. It should be noted that

a nonzero amplitude
∣

∣ymn

∣

∣ for transitions between states

with close to opposite spin projection can occur for the

Hamiltonian (1). It is the first term in (1) that has the

form of a contribution from the strong spin-orbit interaction.

It is known that the combined spinor wave function for

spin 1/2 has the form
(

ψ1(r), ψ2(r)
)

in the presence

of SOB, where components 1 and 2, generally speaking,

are not reduced to one spatial multiplier ψ(r). In this case,

the matrix element ymn may have a nonzero value even

for states with close to antiparallel spin orientation. This is

the basis for the widely used method of electric dipole spin

resonance for manipulating spin in semiconductor structures

with strong SOB using an electric field. An example of

qb
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Figure 3. Dependence of the module
∣

∣y ca

∣

∣ of the dipole matrix

element for a pair of states c and a in Figures 1 and 2 as a function

of the magnetization angle of the barrier θb .
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the dependence of
∣

∣ymn

∣

∣ on θb , obtained by numerical

calculation for the states of the Hamiltonian (1) described

in Ref. [10], is shown in Figure 3, for a pair of states c

and a in Figures 1 and 2, characterized by the opposite sign

of the projection 〈Sx 〉. It can be concluded from Figure 3

that for the considered pair of states, the value of
∣

∣y ca

∣

∣ is up

to 40−50 nm, depending on the barrier angle θb . For such

a dipole matrix element, the characteristic value of the Rabi

frequency � = F
∣

∣ymn

∣

∣/~ for qubit switching in an electric

field with a voltage of F ∼ 0.03−0.09meV/nm reaches

values of (2−10) · 1012 s−1. This estimate suggests that

the spin qubit in our system is capable of operating in the

terahertz mode, which is very promising for applications in

quantum computing. Detailed calculations of the dynamics

of transitions, including taking into account relaxation and

decoherence, may be an interesting task for future studies.

4. Conclusion

A model is constructed and the properties of localization

of states and their spin projections are studied for a double

quantum dot at the edge of a topological insulator formed by

three magnetic barriers. It is shown that different states of

the discrete spectrum correspond to both different regions

of the spatial localization of the electron in left or right

quantum dots, and different selected spin projections. The

possibility of encoding information for two subsystems,

charge and spin, corresponding to the implementation of

spatial and spin qubits is proposed on this basis. Schemes

of some single-qubit and one two-qubit operations are

also considered, which can be represented in the specified

encoding if transitions between states of a discrete spectrum

in a resonant electric field are carried out. The dynamics of

these transitions, together with the calculation of errors and

the calculation of reliability (fidelity) of operations, as well

as the construction of diagrams of other gates (Hadamard

and others) within the framework of the proposed model,

may be a topic for future work.
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