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The control of charge and spin density localization in a double quantum
dot at the edge of the topological insulator as the physical background

of the qubit operations
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The methods of control of the spatial localization and spin polarization are studied for the model of double
quantum dot at the edge of topological insulator based on HgTe/CdTe quantum well and formed by three magnetic
barriers. The transitions in the spectrum induced by the resonance electric field are found for which the initial and
final states correspond to the different spatial localization or to the specific sign of the chosen spin projection. Based
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1. Introduction
Topological insulators (TI), in particular two-dimensio-
nal TI based on HgTe/Cd,Hg;_,Te quantum wells [1,2]
have been experimentally and theoretically studied for
about 20 years. Many fundamental and applied results
have been obtained during this period, but progress in
their technological and instrumental applications is more
modest. This is partly due to the unique properties of
the edge states in TI, which are stable from scattering
by non-magnetic impurities and propagate over significant
distances, on the order of several microns, along the edge
of the sample [2]. At the same time, it turns out to
be much more difficult to construct compact objects of
the form of quantum dots (QDs) for subsequent use, in
particular in quantum computing problems [3]. This is
attributable to the difficulties in creating localized functions
from edge states in a purely electric field, while a magnetic
field destroys topological security. Nevertheless, theoretical
models of quantum dots with magnetic barriers have been
known for many years [4-6]. In our previous work, we
developed the models of single [7-9] and double [10]
QD with magnetic barriers of finite permeability based on
dielectric magnets. It was shown that there are a variable
number of discrete levels depending on the height and
orientation of the magnetization of the barriers [9], as well
as the presence of continuous spectrum states above the
barriers. The possibilities of controlling the populations of
discrete levels in a periodic electric field of were studied
in Ref. [8].

In this paper, we continue to study the model of
a double quantum dot on the TI edge based on the
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HgTe/Cd,Hg; . Te quantum well formed by three magnetic
barriers, which was started in Ref. [10]. The main emphasis
is placed on the control of spatial localization and the
associated spin polarization of states depending on the
orientation of the magnetization of the barriers. It is
shown that a change in the orientation of only one central
barrier can affect localization and spin polarization over
a wide range. Based on the predicted properties, we
propose encoding schemes for the states of two qubits in
the system under consideration. The first qubit can be
called a charge qubit, and spatial localization of the wave
function is used for encoding. The second qubit can be
called a spin qubit, and the spin projection is used for
encoding. The possibilities of organizing basic quantum
computing operations in such a qubit system, such as the
NOT and Z gates, as well as the two-qubit CNOT operation,
are discussed when the system is exposed to a resonant
electric field.

We limit ourselves to solving the problem within the
framework of the single-particle Schrodinger equation,
without including relaxation effects. Some estimates of such
effects were obtained earlier by us [7], others are given in
this paper. They say that at sufficiently low temperatures,
which are common for qubit systems (1K and lower), it
is possible to perform the operations under discussion. In
addition, our model allows you to switch between system
states (gates). as transitions between its various stationary
states for fixed system parameters. The results obtained
allow us to hope for the application of structures with a
double quantum dot at the edge of the TI, including in
quantum computing tasks.
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Figure 1.
Hamiltonian (1).
units.

2. Model and properties of states

We use the model of double QD on the edge of TI
with HgTe/Cd,Hg;_,Te quantum well, developed by us
in Ref. [10]. In this model, we consider a sequence of three
magnetic barriers located at the TI edge, between which two
regions of quantum dots are formed, as shown in Figure 1.
The Hamiltonian of the system has the form

H = Akyo, —MS(—Ly — y) (0x cos 01 + oy sin 6, )
— M (S(y) — S(v — L)) (0x cos 0, + o, sin6,)
— M3S(y — Ly — Ly) (0x cos 0y + 0y sin6,). (1)

In (1), the first term Ak,o, corresponds to the kinetic
energy of one-dimensional edge states in TI [1], where
the parameter A = 360 meV - nm. The remaining terms de-
scribe the energy of interaction with three magnetic barriers
located in regions y < —Li, 0 <y <L, and y > L, + Ly,
respectively, and having a profile described by the step
function S(y), as shown in Figure 1. The amplitudes of
interaction with barriers in energy units are My, My, M,
angles 01, 0, 0, set the orientation the magnetization of
the barriers in the plane (xy), where 6 = 0 corresponds to
the orientation along the axis Ox in Figure 1. Boundary
conditions, wave functions, and the energy spectrum of
the Hamiltonian (1) discussed in Ref [10]. It was also
shown that with mutually opposite orientations of the
magnetization of the extreme barriers 6; =0, 6, =,
depending on the orientation of the magnetization of the
central barrier, localization of the wave function occurs, as
shown in Figure 2,a for the ratio P of the contributions
of states in the left and right QD. Here, the orange color
means localization in the left QD at P > 1, and blue —
in right QD at P < 1. The scale in Figure 2,a does not
allow showing the small gaps that form at the intersection
points of the levels at 6, = m/2, 37/2, i.e., there is anti-
crossing in the spectrum [10].

The question arises about the effect on the electronic
spectrum shown in Figure 2,a and b of the Coulomb

A model of a double quantum dot formed on the one-dimensional TI edge by magnetic barriers, described by the
Ly, L, — widths of quantum dots, L, — width of the central barrier, M, M,, M, — barrier heights in energy

interaction between particles corresponding to filled states
below the Fermi level when the polarization of the central
barrier changes. To estimate the energy order of the E¢
Coulomb interaction, we use the expression

Ec ~ e*/(eL). 2)

In (2) L~ Ly ~ Ly ~100nm is the distance between the
maxima of the wave function in the spectrum for states
closest to each other in the spectrum and located below the
Fermi level, which are shown in Figure 2,a. In terms of
the order of magnitude, L corresponds to the size of the
quantum dot L;(L,) [10]. The constant & ~ 20 is the low-
frequency permittivity of the bulk HgTe [11], which can
decrease by 10—20 % in the HgTe quantum well depending
on the electron concentration [12]. We obtain Ec ~ 1 meV
after substituting the specified parameters in (2). The
characteristic kinetic energy of the electrons in the spectrum
in Figure 2 is comparable to the energy of discrete states
and is of the order of E,, ~ 5—15meV for most of the levels
used in our calculations. This means that the condition
Ec/E, ~0.05—0.2 is fulfilled for the main fraction of
states, which allows, to a first approximation, not to take
into account the Coulomb interaction with states located
below the Fermi level. For subsequent approximations, this
account will already be required, which, however, is beyond
the scope of this work.

3. Encoding information and operations
with qubits in charge and spin
subsystems

The behavior of the function P, which describes the
localization of the wave function in Figure 2,a, suggests
the possibility of using states with certain localization
regions in left and right QD with a fixed orientation of the
magnetization 6, of the central barrier as the basis of the
»charge” qubit for encoding information. As an example,
in Figure 2,a, the points a, b, ¢, d are marked, of which the
points a and ¢ correspond to the localization of states in the
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Figure 2. ¢ — localization function P depending on the energy E
and the magnetization angle of the central barrier 6, for parameters
in (1) 91 =0, 92 =17, Ll, Lz and L, = IOOnm, Ml, Mz and
M, =20meV. The blue color corresponds to localization in
the right QD scan at P < 1, orange — localization in left QD
at P> 1; b — dependence of the average value of the spin
projection (Sy) on E and 6, at the same parameters. For (a)
and (b) pairs of points a and b (or ¢ and d) for a fixed 6,
the answers are different localization and different sign (S.). The
encoding of the states of the system (3) of two coupled charge and
spin qubits is indicated next to the points.

left QD, and points b and d correspond to the localization
of states in the right QD. Their spatial localization allows
talking about the possibility of encoding states of the form
]0) and |1) for a charge or spatial qubit, where the state |0)
is attributed to the values P >> 1, i.e. on the orange branch
of the spectrum, and the state of |1) is attributed to the
values of P < 1, i.e., the blue branch of the spectrum. With
this approach, the points a and ¢ in Figure 2,a correspond
to the same, i.e., the first state |0) of the charge qubit,
and the points b and d correspond to its second state
[1). The transition between these states is possible, for
example, when an electric field pulse is applied at the
resonant frequency w,. = E, — E. or wyg = Ep — E; [§],
depending on which QD the electron is localized in. It
should be noted that even if the frequencies w,. and wp,
exactly match, transitions between these pairs of levels can
be induced independently, since the wave functions of the
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initial and final states in each pair are localized at different
quantum dots. Accordingly, the localization of the electric
field causing the transitions in the region of a specific QD
will cause transitions between only one pair of levels.

The question arises — what are the properties of the
spin projections of the Hamiltonian states (1) and is it
also possible to use them to encode information. It is
known that the average value of the z-projection of spin
of a two-component spinor, which is an eigenfunction of
the Hamiltonian (1), is zero [9]. The other two projections
depend significantly on the energy and, as we will see, on
the spatial localization of the wave function. Figure 2,5
shows a graph of the distribution of the average value of
x-projections of spin (S, ) (in units 7/2) for the same energy
levels and the same parameters that answers Figure 2,a.
From the comparison of Figure 2,a and b, it can be
concluded that the sign of (S,) can change in case of the
change of the spatial localization area of the wave function,
which corresponds to the transition between the orange and
blue branches in Figure 2,a. By analogy with encoding
information through spatial localization, we can repeat the
reasoning for encoding the states of the second, ,,spin“ qubit
in our system using the sign of the spin projection, for
example, (S,), the graph for which is shown in Figure 2, b.
The state |0) of this qubit can be attributed to the negative
values of the projection (S,), shown in shades of orange
in Figure 2,b. The state |1) of the spin qubit, respectively,
will correspond to the positive sign of the projection (S,),
shown in shades of green in Figure 2,5. Then the state
|0) will correspond to points a and d in Figure 2, b with the
same projection sign (S, ), and the state |1) of the spin qubit
will correspond to points b and d, respectively.

The discussions conducted for the spatial localization
in Figure 2, a and for the spin projection (S, ) in Figure 2,5
allow speaking about the description of two related subsys-
tems, charge and spin, which can be referred as a charge
qubit and a spin qubit. The following states of a two-
qubit system can be assigned using this language to the
points a, b, ¢, d in Figure 2,a and b, where the first position
corresponds to the charge qubit, and the second position
corresponds to the spin qubit:

a—[00); b— [11); ¢ — [01); d — |10).  (3)

First, we will discuss possible schemes for implementing
some single-qubit operations, taking into account enco-
ding (3), and then the two-qubit operation CNOT. These
operations can be performed by applying control pulses of
an electric field that cause transitions between the states of
the discrete spectrum in the QDs under consideration, as
discussed in Ref. [10]. In this paper, we will discuss only a
qualitative schematic diagram of such transitions.

3.1. Single-qubit operation NOT, charge qubit

This operation can be implemented with a resonant
transition between the levels a and b or ¢ and d in Figure 2,
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depending on the position of the Fermi level. The final state
must be free to ensure upward energy transitions, which can
be achieved by appropriately shifting the Fermi level when
the potentials of the control electrodes change.

3.2. Single-qubit operation NOT, spin qubit

This operation can be implemented similarly to the
previous one, only transitions must be performed at a
resonant frequency between pairs of levels @ and c or b
and d in Figure 2. It should be noted that this time
the difference between the pairs of levels between which
transitions take place, in addition to the energy of the levels,
also consists in the different spatial localization of the wave
functions, which is explained by the different color of the
lines in Figure 2,a.

3.3. Single-qubit operations Z, charge
and spin qubits

The one-qubit operation Z consists of multiplying the
state vector from the left by the Pauli matrix o;, converting
the state ala) + B|b) to the state a|a) — |b). It is known
that it can be implemented for a two-tier system, i.e. for
both the charge and spin qubits, simply in the course of the
free evolution of the state [3]. Let us consider, for example,
the evolution of a linear combination of states |a) and |c)
forming the basis of a spin qubit in Figure 2, i.e., a function
of the form ¥(t =0) = ala) + B|c), where a and S are
arbitrary constants. Indeed, the energies of the states, for
example, at points @ and ¢ in Figure 2,a and b differ in
sign, i.e., E, = Ey and E, = —E,. If we select a time point
from the start of the countdown at #, = (7 + 4an)h/2E,,
where n =0, 1, 2, ..., then after taking out the total phase
multiplier, we get a combination in which the contribution of
the state |¢) will differ by the phase s from the contribution
of the state a, i.e., we will have Y(r =1t,) = ala) — B|c),
which is the implementation of the operation Z. Similar
arguments can be carried out for a linear combination of
states.a, d or b, ¢ corresponding to the basis of the charge
qubit.

3.4. Two-qubit CNOT operation

As you know, the CNOT operation leaves a pair of
two-qubit states |00) and |01) unchanged, and the states
[10) and |11) swap [3]. In encoding (3), this means that
there should be no transition between the points a and ¢
in Figure 2,a and b, but the transition is implemented
between the points » and d. These pairs of points
correspond, according to Figure 2,a, to different spatial
localization of the wave function in left or in right QD,
respectively. It can be assumed that this transition can be
implemented under the condition that a control action, for
example, an alternating electric field, causing transitions
between states with different spin projections (S,) at a
resonant frequency wps = Ep — E, is localized in the region

of only the right QD, to which the pair the points b
and d correspond. This can be achieved by an appropriate
configuration of the control gates. In this case, when the
charge qubit is in the state |0) with the localization of the
wave function in the left QD, the transition between the
points a and ¢ will not take place, since the field will not
affect the wave function. On the contrary, when the charge
qubit is in the state |1) with the localization of the wave
function in the right QD will transition between the points b
and d, i.e. between the states |0) and |1) of the spin qubit.
As a result, we will get the implementation of the CNOT
operation.

3.5. The switching speed of a spin qubit
in an external electric field

In conclusion, we will estimate the speed of the CNOT
operation for a spin qubit in a periodic electric field
with frequency, when a transition occurs between the
states a and ¢ or b and d in Figure 2. Similar estimates
can be obtained for charge qubit operations. In the dipole
approximation for the geometry of our structure in Figure 1
the matrix element of the transition is the matrix element
of the coordinate operator y [8]. It should be noted that
a nonzero amplitude |y,,| for transitions between states
with close to opposite spin projection can occur for the
Hamiltonian (1). It is the first term in (1) that has the
form of a contribution from the strong spin-orbit interaction.
It is known that the combined spinor wave function for
spin 1/2 has the form (yi(r), ¥2(r)) in the presence
of SOB, where components 1 and 2, generally speaking,
are not reduced to one spatial multiplier ¥ (r). In this case,
the matrix element y,,, may have a nonzero value even
for states with close to antiparallel spin orientation. This is
the basis for the widely used method of electric dipole spin
resonance for manipulating spin in semiconductor structures
with strong SOB using an electric field. An example of
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Figure 3. Dependence of the module ‘ ycu’ of the dipole matrix
element for a pair of states ¢ and a in Figures 1 and 2 as a function
of the magnetization angle of the barrier 6.
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the dependence of |y,u.| on 6,, obtained by numerical
calculation for the states of the Hamiltonian (1) described
in Ref [10], is shown in Figure 3, for a pair of states c
and a in Figures 1 and 2, characterized by the opposite sign
of the projection (S,). It can be concluded from Figure 3
that for the considered pair of states, the value of |y.q| is up
to 40—50nm, depending on the barrier angle ;. For such
a dipole matrix element, the characteristic value of the Rabi
frequency € = F|y,u|/h for qubit switching in an electric
field with a voltage of F ~ 0.03—0.09 meV/nm reaches
values of (2—10)-10'2s~!. This estimate suggests that
the spin qubit in our system is capable of operating in the
terahertz mode, which is very promising for applications in
quantum computing. Detailed calculations of the dynamics
of transitions, including taking into account relaxation and
decoherence, may be an interesting task for future studies.

4. Conclusion

A model is constructed and the properties of localization
of states and their spin projections are studied for a double
quantum dot at the edge of a topological insulator formed by
three magnetic barriers. It is shown that different states of
the discrete spectrum correspond to both different regions
of the spatial localization of the electron in left or right
quantum dots, and different selected spin projections. The
possibility of encoding information for two subsystems,
charge and spin, corresponding to the implementation of
spatial and spin qubits is proposed on this basis. Schemes
of some single-qubit and one two-qubit operations are
also considered, which can be represented in the specified
encoding if transitions between states of a discrete spectrum
in a resonant electric field are carried out. The dynamics of
these transitions, together with the calculation of errors and
the calculation of reliability (fidelity) of operations, as well
as the construction of diagrams of other gates (Hadamard
and others) within the framework of the proposed model,
may be a topic for future work.
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