Electron and hole mobility in carbon hybrid structures
Glukhova O. E. 1,2, Slepchenkov M. M. 1, Petrunin A. A. 1
1Saratov State University, Saratov, Russia
2I.M. Sechenov First Moscow State Medical University, Moscow, Russia
Email: glukhovaoe@info.sgu.ru, slepchenkovm@mail.ru, sacha.petrynin@gmail.com

PDF
Within the framework of density functional theory, we conducted a study of the influence of topological features on the mobility of electrons and holes in hybrid graphene-nanotube structures, where the vertically oriented graphene nanoribbon is covalently attached to the lateral surface of the single-walled carbon nanotubes. Topological features are understood as the diameter of the nanotube and the width of the nanoribbon. It has been established that increasing the diameter of the nanotube from 6.26 to 12.52 Angstrem leads to an increase in electron mobility in hybrid structures by more than 50 times. With an increase in the width of the nanoribbon from 9.81 to 22.17 Angstrem and a fixed diameter of the nanotube (12.52 Angstrem), the electron mobility also increases, but only by ~1.5 times. Keywords: charge carrier mobility, effective mass, deformation potential, graphene-nanotube structures.
  1. S. Rathinavel, K. Priyadharshini, D. Panda. Mater. Sci. Eng. B, 268, 115095 (2021)
  2. Q. Ji, B. Wang, Y. Zheng, X. Yan, F. Zeng, B. Lu. J. Alloys Compd., 897, 163136 (2022)
  3. P.N.D. Duoc, N.H. Binh, T. Van Hau, C.T. Thanh, P. Van Trinh, N.V. Tuyen, N. Van Quynh, N. Van Tu, V.D. Chinh, V.T. Thu, P.D. Thang, P.N. Minh, N. Van Chuc, J. Hazard. Mater., 400, 123185 (2020)
  4. X. Zhang, X. Zhang, Y. Zhang, Y. Liu, W. Peng. IEEE Trans. Instrum. Meas., 70, 1 (2021)
  5. O. Guler, C. Yavuz, O. Ba sgoz, S. Alti n, I.S. Yahia. J. Mater. Sci.: Mater. Electron., 31, 3184 (2020)
  6. Y. Zhong, K. Deng, J. Zheng, T. Zhang, P. Liu, X. Lv, W.J. Ji. J. Mater. Sci. Technol., 149, 205 (2023)
  7. Q. Ji, B. Wang, Y. Zheng, F. Zeng, B. Lu. Diamond. Relat. Mater., 124, 108940 (2022)
  8. J.S. Han, S.H. Lee, H. Go, S.J. Kim, J.H. Noh, C.J. Lee. ACS Nano, 16 (7), 10231 (2022)
  9. H.R. Lee, O.J. Hwang, B. Cho, K.C. Park. Vacuum, 182, 109696 (2020)
  10. T. Kim, S. Fan, S. Lee, M.K. Joo, Y.H. Lee. Sci. Rep., 10 (1), 13101 (2020).
  11. Darabi, M.R. Salehi, E. Abiri. ECS J. Solid State Sci. Technol., 11 (3), 031007 (2022)
  12. X. Hong, W. Shi, H. Zheng, D. Liang. Vacuum, 169, 108917 (2019)
  13. M.N. Dang, M.D. Nguyen, N.K. Hiep, P.N. Hong, I.H. Baek, N.T. Hong. Nanomaterials, 10 (10), 1931 (2020)
  14. J.Y. Oh, G. H. Jun, S. Jin, H. J. Ryu, S. H. Hong. ACS Appl. Mater. Interfaces, 8 (5), 3319 (2016)
  15. M.N. Barshutina, V.S. Volkov, A.V. Arsenin, D.I. Yakubovsky, A.V. Melezhik, A.N. Blokhin, A.G. Tkachev, A.V. Lopachev, V.A. Kondrashov. Nanomaterials, 11 (5), 1143 (2021)
  16. J. Foroughi, G.M. Spinks, D. Antiohos, A. Mirabedini, S. Gambhir, G.G. Wallace, S.R. Ghorbani, G. Peleckis, M.E. Kozlov, M.D. Lima, R.H. Baughman. Adv. Funct. Mater., 24 (37), 5859 (2014)
  17. M. Chen, L. Zhang, S. Duan, S. Jing, H. Jiang, C. Li. Adv. Funct. Mater., 24 (47), 7548 (2014)
  18. D.D. Nguyen, N.H. Tai, S.Y. Chen, Y.L. Chueh. Nanoscale, 4 (2), 632 (2012)
  19. W.J. Yu, S.Y. Lee, S.H. Chae, D. Perello, G.H. Han, M. Yun, Y.H. Lee. Nano Lett., 11 (3), 1344 (2011)
  20. V.V. Ivanovskaya, A. Zobelli, P. Wagner, M.I. Heggie, P.R. Briddon, M.J. Rayson, C.P. Ewels. Phys. Rev. Lett., 107 (6), 065502 (2011)
  21. M.A. Akhukov, S. Yuan, A. Fasolino, M.I. Katsnelson. New J. Phys., 14 (12), 123012 (2012)
  22. The SIESTA group [Electronic source]. Available at: departments.icmab.es/leem/siesta/ (date of access: 03.07.2024). Cover from screen. Lang. --- EN
  23. A. Garci a, N. Papior, A. Akhtar, E. Artacho, V. Blum, E. Bosoni, P. Brandimarte, M. Brandbyge, J.I. Cerda, F. Corsetti, R. Cuadrado, V. Dikan, J. Ferrer, J. Gale, P. Garci a-Fernandez, V.M. Garci a-Suarez, S. Garci a, G. Huhs, S. Illera, R. Korytar, P. Koval, I. Lebedeva, L. Lin, P. Lopez-Tarifa, S.G. Mayo; S. Mohr, P. Ordejon, A. Postnikov, Y. Pouillon, M. Pruneda, R. Robles, D. Sanchez-Portal, J.M. Soler, R. Ullah, V. Wen-zhe Yu, J. Junquera. J. Chem. Phys., 152 (20), 204108 (2020)
  24. J. Xi, M. Long, L. Tang, D. Wang, Z. Shuai. Nanoscale, 4 (15), 4348 (2012)
  25. J. Bardeen, W.J.P.R. Shockley. Phys. Rev., 80 (1), 72 (1950)
  26. A. Yamanaka, S. Okada. Carbon, 96, 351 (2016)
  27. H. Bai, H. Gao, Y. Ma, Q. Wang, Y. Wu. Diamond Relat. Mater., 109, 108013 (2020)
  28. B. Xu, Y.D. Xia, J. Yin, X.G. Wan, K. Jiang, A.D. Li, D. Wu, Z.G. Liu. Appl. Phys. Lett., 96, 183108 (2010)
  29. G. Dresselhaus, M.S. Dresselhaus, R. Saito. Physical properties of carbon nanotubes (Singapore, World Scientific, 1998)
  30. S. Castan, G. Sigmund, T. Huffer, N. Tepe, F. von Der Kammer, B. Chefetz, T. Hofmann. Environ. Sci.: Process. Impacts, 22 (9), 1888 (2020)
  31. P.V. Avramov, K.N. Kudin, G.E. Scuseria. Chem. Phys. Lett., 370, 597 (2003). DOI: 10.1016/S0009-2614(03)00113-1
  32. E.Y. Li. Carbon, 100, 187 (2016). DOI: 10.1016/j.carbon.2015.12.083
  33. F. Buonocore, A. Capasso, M. Celino, N. Lisi, O. Pulci. J. Phys. Chem. C, 125, 16316 (2021). DOI: 10.1021/acs.jpcc.1c04397
  34. S.M. Monavari, F. Marsusi, N. Memarian, M. Qasemnazhand. Sci Rep., 13, 3118 (2023). DOI: 10.1038/s41598-023-29862-9
  35. H.M. Yu, S. Sharma, S. Agarwal, O. Liebmana, A.S. Banerjee. RSC Adv., 14, 963 (2024). DOI: 10.1039/D3RA06988E

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru