Influence of structured substrate surface properties on the GaAs planar nanowire morphology (Monte Carlo simulation)
Mantsurova S. V.1,2, Spirina A. A.1, Shwartz N. L.1,2
1Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: snezhana@isp.nsc.ru
This work is devoted to the Monte Carlo simulation of the self-catalyzed growth of GaAs planar nanowires according to the vapor-liquid-solid mechanism on GaAs substrates covered with a structured film-mask. A structured film-mask is defined as a layer with the silicon oxide properties and with geometry in the form of grooves of different depths, widths, and distances between them. The influence of the film-mask properties and the structured surface geometry on the GaAs planar nanowire morphology was analyzed. A range of flux intensities for stable GaAs planar nanowires growth at the chosen temperature was found. The conditions for transition from vapor-liquid-solid growth to selective growth (without a drop) of planar nanowire were found, which makes it possible to obtain defect-free nanowires along the groove. Keywords: planar nanowire, GaAs, structured surface, simulation, Monte Carlo.
- Y. Sun, T. Dong, L. Yu, J. Xu, K. Chen. Adv. Mater., 32 (27), 1903945 (2020)
- S.A. Fortuna, J. Wen, I.S. Chun, X. Li. Nano Lett., 8 (12), 4421 (2008)
- S.A. Fortuna, X.Li. IEEE Electron Dev. Lett., 30 (6), 593 (2009)
- C. Zhang, X. Li. Solid State Electron., 93, 40 (2014)
- X. Miao, C. Zhang, X. Li. Nano Lett., 13 (6), 2548 (2013)
- B.R. Borodin, P.A. Alekseev, V. Khayrudinov, E. Ubyivovk, Y. Berdnikov, N. Sibirev, H. Lipsanen. Cryst. Eng. Commun., 25 (9), 1374 (2023)
- E. Oksenberg, S. Marti-Saanchez, R. Popovitz-Biro, J. Arbiol, E. Joselevich. ACS Nano, 11 (6), 6155 (2017)
- P. Aseev, A. Fursina, F. Boekhout, F. Krizek, J.E. Sestoft, F. Borsoi, S. Heedt, G. Wang, L. Binci, S. Marti-Sanchez, T. Swoboda, R. Koops, E. Uccelli, J. Arbiol, P. Krogstrup, L.P. Kouwenhoven, P. Caroff. Nano Lett., 19 (1), 218 (2019)
- S. Breuer, C. Pfuller, T. Flissikowski, O. Brandt, H. T. Grahn, L. Geelhaar, H. Riechert. Nano Lett., 11 (3), 1276 (2011)
- A. Fontcuberta i Morral, C. Colombo, G. Abstreiter, J. Arbiol, J.R. Morante. Appl. Phys. Lett., 92 (6), 063112 (2008)
- F. Bastiman, H. Kupers, C. Somaschini, L. Geelhaar. Nanotechnology, 27 (9), 095601 (2016)
- R.S. Dowdy, D.A. Walko, X.Li. Nanotechnology, 24 (3), 035304 (2013)
- A.A. Spirina, N.L. Shwartz. J. Cryst. Growth, 632, 127631 (2024)
- R.Ben-Zvi, H. Burrows, M. Schvartzman, O. Bitton, I. Pinkas, I. Kaplan-Ashiri, O. Brontvein, E. Joselevich. ACS Nano, 13 (5), 5572 (2019)
- Y. Berdnikov, N. Sibirev, V. Khayrudinov, A. Alaferdov, S. Moshkalev, E. Ubyivovk, H. Lipsanen, A. Bouravleuv. CrystEngComm, 21 (41), 6165 (2019)
- F. Matteini, G. Tutuncuoglu, H. Potts, F. Jabeen, A. Fontcuberta i Morral. Cryst. Growth Des., 15 (7), 3105 (2015)
- F. Matteini, G. Tutuncuoglu, D. Mikulik, J. Vukajlovic-Plestina, H. Potts, J.B. Leran, W.C. Carter, A. Fontcuberta i Morral. Crys. Growth Des., 16 (10), 5781 (2016)
- M. Heib, E. Riedlberger, D. Spirkoska, M. Bichler, G. Abstreiter, A. Fontcuberta i Morral. J. Cryst. Growth, 310 (6), 1049 (2008)
- A. Rothman, V.G. Dubrovskii, E. Joselevich. Proc. Natl. Acad. Sci. (PNAS), 117 (1), 152 (2020)
- A.N. Karpov, A.V. Zverev, A.G. Nastovyak, S.V. Usenkov, N.L. Shwarts. Vychislit. metody i programmir, 15 (3), 388 (2014). (in Russian)
- A.A. Spirina, I.G. Neizvestny, N.L. Shwartz. Semiconductors, 53, 2125 (2019)
- L. Fouquat, M. Vettori, C. Botella, A. Benamrouche, J. Penuelas, G. Grenet. J. Cryst. Growth, 514, 83 (2019)
- A.A. Spirina, V.L. Alperovich, N.L. Shwartz. Appl. Surf. Sci., 540, 148281 (2021)
- A.A. Spirina, N.L. Shwarts. FTP, 54 (2), 160 (2020). (in Russian)
- N. Morgan, V.G. Dubrovskii, A.K. Stief, D. Dede, M. Sangle-Ferri\`ere, A. Rudra, V. Piazza, A. Fontcuberta i Morral. Cryst. Growth Des., 23 (7), 5083 (2023)
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.