Competition between isotropic and strongly anisotropic terms in the impact ionization rate of narrow- and middle-gap cubic semiconductors
Afanasiev A. N.
1, Greshnov A. A.
1, Zegrya G. G.
11Ioffe Institute, St. Petersburg, Russia
Email: afanasiev.an@mail.ru
We report on the strong anisotropy of the inter-band process of impact ionization in direct-gap cubic semiconductors with either weak or strong spin-orbit coupling at low effective temperatures of electron distribution T, and the crossover to isotropic behavior with increasing T. Such anisotropy is related to specific mechanism of the impact ionization involving coupling of the electron and heavy hole states via remote bands, which is vanishing for some high-symmetry propagation directions of an initial electron, namely [100] and [111]. At room temperature impact ionization rate in narrow-gap semiconductors InSb, InAs, GaSb and In0.53Ga0.47As is isotropic while in middle-gap InP, GaAs and CdTe both terms are comparable. We propose simple and justified analytic generalization of Keldysh formula for the impact ionization rate, which is suitable for incorporation into modelling software. Keywords: Impact ionization, direct gap semiconductor, kp model, hot carriers, device modelling.
- S. Zi. Fizika poluprovodnikovyk priborov (M., Mir, 1984). (in Russian)
- K. Gopalakrishnan, P.B. Griffin, J.D. Plummer. IEEE Trans. Electron Dev., 52, 69 (2005)
- S. Trumm, M. Betz, F. Sotier, A. Leitenstorfer, A. Schwanhau er, M. Eckardt, O. Schmidt, S. Malzer, G.H. Dohler, M. Hanson, D. Driscoll, A.C. Gossard. Appl. Phys. Lett., 88, 132113 (2006).
- S. Chen, G. Wang. J. Appl. Phys., 103, 023703 (2008)
- F. Bertazzi, M. Moresco, E. Bellotti. J. Appl. Phys., 106, 063718 (2009)
- C.K. Chia. Appl. Phys. Lett., 97, 073501 (2010)
- E. Bellotti, F. Bertazzi. J. Appl. Phys., 111, 103711 (2012)
- S. Shishehchi, F. Bertazzi, E. Bellotti. J. Appl. Phys., 113, 203709 (2013)
- S. Avsmontas, R. Raguotis, S. Bumeliene. Semicond. Sci. Technol., 28, 025019 (2013)
- K. Kodama, H. Tokuda, M. Kuzuhara. J. Appl. Phys., 114, 044509 (2013)
- K. Ghosh, U. Singisetti. J. Appl. Phys., 124, 085707 (2018)
- S. Avsmontas, S. Bumeliene, J. Gradauskas, R. Raguotis, A. Suvziedelis. Semicond. Sci. Technol., 34, 075016 (2019)
- S. Avsmontas, S. Bumeliene, J. Gradauskas, R. Raguotis, A. Suvziedelis. Sci. Rep., 10, 10580 (2020)
- M.V. Fischetti, S.E. Laux. Phys. Rev. B, 38, 9721 (1988)
- L.V. Keldysh. ZhETF, 37, 713 (1959). (in Russian)
- B.K. Ridley. Quantum Processes in Semiconductors (Oxford University Press, N.Y., 2013)
- M.G. Burt, S. Brand, C. Smith, R.A. Abram. J. Phys. C: Solid State Phys., 17, 6385 (1984)
- K.F. Brennan. The Physics of Semiconductors: With Applications to Optoelectronic Devices (Cambridge University Press, Cambridge, 1999)
- A.N. Afanasyev, A.A. Greshnov, G.G. Zegrya. Pisma ZhETF 105, 586 (2017). (in Russian)
- B.L. Gelmont. ZhETF, 75, 536 (1978). (in Russian)
- R. Redmer, J.R. Madureira, N. Fitzer, S.M. Goodnick, W. Schattke, E. Scholl. J. Appl. Phys., 87, 781 (2000)
- A.R. Beattie, R.A. Abram, P. Scharoch. Semicond. Sci. Technol., 5, 738 (1990)
- B. Gelmont, K.-S. Kim, M. Shur. Phys. Rev. Lett., 69, 1280 (1992)
- K.Y. Choo, D.S. Ong. J. Appl. Phys., 96, 5649 (2004)
- C.K. Chia, G.K. Dalapati. IEEE Trans. Electron Dev., 60, 3435 (2013)
- D. Dolgos, A. Schenk, B. Witzigmann. J. Appl. Phys., 111, 073714 (2012)
- I.C. Sandall, J.S. Ng, S. Xie, P.J. Ker, C.H. Tan. Opt. Express, 21, 8630 (2013)
- P. Scharoch, R.A. Abram. Semicond. Sci. Technol., 3, 973 (1988)
- S. Brand, R.A. Abram. J. Phys. C: Solid State Phys., 17, L201 (1984)
- R. Winkler. Spin-Orbit Coupling Effects in Two-Dimensional Electron and Hole Systems (Springer Verlag, Berlin--Heidelberg, 2003)
- M. Cardona, N.E. Christensen, G. Fasol. Phys. Rev. B, 38, 1806 (1988)
- G. Fonthal, L. Tirado-Meji a, J. Mari n-Hurtado, H. Ariza-Calderon, J. Mendoza-Alvarez. J. Phys. Chem. Solids, 61, 579 (2000)
- I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan. J. Appl. Phys., 89, 5815 (2001)
- W.H. Lau, J.T. Olesberg, M.E. Flatte. Electronic structures and electron spin decoherence in (001)-grown layered zincblende semiconductors (2004). arXiv:condmat/ 0406201 [cond-mat.mes-hall]
- J.-M. Jancu, R. Scholz, E.A. de Andrada e Silva, G.C. La Rocca. Phys. Rev. B, 72, 193201 (2005)
- New Semiconductor Materials Database. Characteristics and Properties. Ioffe Institute (http://www.matprop.ru/)
- E.O. Kane. J. Phys. Chem. Solids, 1, 249 (1957)
- S. Richard, F. Aniel, G. Fishman. Phys. Rev. B, 70, 235204 (2004)
- A.P. Dmitriev, M.P. Mikhailova, I.N. Yassievich. Phys. Status Solidi B, 113, 125 (1982).
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.