Temperature analysis of dark current in pin-photodiodes based on In0.83Ga0.17As/InP epitaxial heterostructures with metamorphic buffer layers
Vasilkova E. I.1, Barantsev O. V.1, Baranov A. I.1, Pirogov E. V.1, Voropaev K. O.2, Vasiliev A. A.2, Karachinsky L. Ya.1,3, Novikov I. I.1,3, Sobolev M. S.1
1Alferov Federal State Budgetary Institution of Higher Education and Science Saint Petersburg National Research Academic University of the Russian Academy of Sciences, St. Petersburg, Russia
2OAO OKB-Planeta, Veliky Novgorod, Russia
3ITMO University, St. Petersburg, Russia
Email: elenvasilkov@gmail.com

PDF
Crystals of 2.2-2.6 μm sensitive pin-photodiodes were fabricated by lift-off photolithography using InAlAs/In0.83Ga0.17As/InP heterostructures, grown by molecular beam epitaxy. A design feature of the proposed heterostructures is the inclusion of metamorphic InAlAs buffer layers for subsequent low-stress growth of the In0.83Ga0.17As active region. A profile of charge carrier distribution over the structure was obtained employing electrochemical capacitance-voltage characteristic, and the carrier concentration of 2·1016 cm-3 in the In0.83Ga0.17As active layer was determined. Dark current-voltage characteristics of pin-photodiode chips from the same wafer with typical (~2 mA/cm2 at -10 mV) and excessive (~3 mA/cm2 at -10 mV) values of dark currents were studied in the temperature range of 80-300 K. Connection of the dark current mechanisms associated with threading dislocations in the photodiode active region with increased dark current densities was demonstrated in the reverse bias voltage range of 0.3-1 V. With a small applied bias of -10 mV, the dominant contribution of trap-assisted tunneling and surface recombination at temperatures of 180-240 K and generation-recombination of charge carriers in the space-charge region at 260-300 K to the overall dark current was found in both photodiode chip samples. Keywords: SWIR photodetectors, dark currents, metamorphic heterostructures, current-voltage characteristic, electrochemical capacitance-voltage profiling.
  1. I.D. Burlakov, L.Ya. Grinchenko, A.I. Dirochka, N.B. Zaletaev. UPF, 2 (2), 131 (2014). (in Russian)
  2. X. Chen, Y. Gu, Y. Zhang. Epitaxy and device properties of InGaAs photodetectors with relatively high lattice mismatch, in Epitaxy (IntechOpen, Rijeka, 2018)
  3. L.Y. Karachinsky, T. Kettler, I.I. Novikov, Y.M. Shernyakov, N.Y. Gordeev, M.V. Maximov, N.V. Kryzhanovskaya, A.E. Zhukov, E.S. Semenova, A.P. Vasil'ev. Semicond. Sci. Technol., 21 (5), 691 (2006)
  4. A.Yu. Egorov, L.Ya. Karachinsky, I.I. Novikov, A.V. Babichev, T.N. Berezovskaya, V.N. Nevedomskiy. Semiconductors, 49 (10), 1388 (2015)
  5. A.Yu. Egorov, L.Ya. Karachinsky, I.I. Novikov, A.V. Babichev, V.N. Nevedomskiy, V.E. Bugrov. Semiconductors, 50 (5), 612 (2016)
  6. E.I. Vasilkova, E.V. Pirogov, M.S. Sobolev, E.V. Ubyivovk, A.M. Miserov, P.V. Seredin. Kondensirovannye sredy i mezhfaznye granitsy, 25 (1), 20 (2023)
  7. X.Y. Chen, Y. Gu, Y.G. Zhang, Y.J. Ma, B. Du, H.Y. Shi, W.Y. Ji, Y. Zhu. Infr. Phys. Technol., 89, 381 (2018)
  8. X. Ji, B. Liu, H. Tang, X. Yang, X. Li, H. Gong, B. Shen, P. Han, F. Yan. AIP Adv., 4 (8), 087135 (2014)
  9. E.I. Vasilkova, E.V. Pirogov, K.Yu. Shubina, K.O. Voropaev, A.A. Vasiliev, L.Ya. Karachinsky, I.I. Novikov, O.V. Barantsev, M.S. Sobolev. Kondensirovannye sredy i mezhfaznye granitsy, 26 (3), 417 (2024). (in Russian)
  10. Y. Liu, Y. Ma, X. Li, J. Fang. IEEE J. Quant. Electron., 56 (2), 1 (2020)
  11. Z. Jiao, T. Guo, G. Zhou, Y. Gu, B. Liu, Y. Yu, C. Yu, Y. Ma, T. Li, X. Li. Electronics, 13, 1339 (2024)
  12. L. Wan, X. Shao, Y. Ma, S. Deng, Y. Liu, J. Cheng, Y. Gu, T. Li, X. Li. Infr. Phys. Technol., 109, 103389 (2020)
  13. C.-C. Huang, C.-L. Ho, M.-C. Wu. IEEE Electron Dev. Lett., 36 (10), 1066 (2015)
  14. I. Shafir, N. Snapi, D. Cohen-Elias, A. Glozman, O. Klin, E. Weiss, O. Westreich, N. Sicron, M. Katz. Appl. Phys. Lett., 118 (6), 063503 (2021)
  15. Y. Liang, W. Zhou, X. Zhang, F. Chang, N. Li, Y. Shan, Y. Zhang, F. Ye, C. Li, X. Su, C. Yang, H. Hao, G. Wang, D. Jiang, D. Wu, H. Ni, Y. Xu, Z. Niu, Y. Zheng, Y. Shi. Appl. Phys. Lett., 125 (14), 141103 (2024)
  16. P.R. Thompson, T.C. Larason. Method of measuring shunt resistance in photodiodes, in 2001 Measurement Sci. Conf. (2001)
  17. N.I. Yakovleva, K.O. Boltar. Prikl. Fiz., 3, 66 (2015). (in Russian)
  18. S.M. Sze. Physics of semiconductor devices (John Wiley \& Sons, 1969)
  19. N.I. Yakovleva. UPF, 6 (3), 231 (2018). (in Russian)
  20. A.V. Sorochkin, V.S. Varavin, A.V. Predein, I.V. Sabinina, M.V. Yakushev. FTP, 46 (4), 551 (2012). (in Russian)
  21. K. Taguchi. P-I-N Photodiodes, in WDM Technologies: Active Optical Components (Elsevier, 2002)
  22. Q. Smets, D. Verreck, A.S. Verhulst, R. Rooyackers, C. Merckling, M. Van De Put, E. Simoen, W. Vandervorst, N. Collaert, V.Y. Thean, B. Soree, G. Groeseneken, M.M. Heyns. J. Appl. Phys., 115 (18), 184503 (2014)
  23. Y.P. Varshni. Physica, 34 (1), 149 (1967)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru