Chemical kinetics of the Si(111) surface nitridation process at temperatures below the structural phase transition (7x7)->(1x1)
Mansurov V.G.
1, Malin T. V.
1, Bashkatov D. D.
1,2, Milakhin D. S.
1,2, Zhuravlev K. S.
11Rzhanov Institute of Semiconductor Physics, Siberian Branch, Russian Academy of Sciences, Novosibirsk, Russia
2Novosibirsk State Technical University, Novosibirsk, Russia
Email: mansurov@isp.nsc.ru, mal-tv@isp.nsc.ru, bashkatov2601@mail.ru, dmilakhin@isp.nsc.ru, zhur@isp.nsc.ru
A study of the influence of the conditions of silicon nitride crystalline phase formation on the process kinetics as a result of controlled nitridation of the reconstructed (7x7) Si(111) surface at varying substrate temperatures in the range 700-800oC has been carried out. From the analysis of the diffraction patterns obtained by the reflection high-energy electron diffraction technique, it is found that the formation kinetics of the two-dimensional (8x8) crystalline phase in the temperature range of 700-800oC differs from that of the high-temperature nitridation and exhibits normal activation-reaction behaviour, indicating the presence of an activation barrier. The activation barrier of 0.6 eV associated with the formation heat of a mobile silicon atom from the adatoms of the (7x7) structure involved in the formation of the SiN (8x8) crystalline phase on the ordered silicon (7x7) superstructure has been determined and a kinetic scheme of the process has been proposed. Keywords: ammonia molecular beam epitaxy (NH3-MBE), nitridation kinetics, crystalline SiN (8x8), Si(111) silicon, RHEED.
- S. Zhou, X. Zhao, P. Du, Z. Zhang, X. Liu, S. Liu, L.J. Guo. Nanoscale, 14 (13), 4887 (2022). DOI: 10.1039/D1NR08221C
- V. Jmerik, D. Nechaev, A. Semenov, E. Evropeitsev, T. Shubina, A. Toropov, M. Yagovkina, P. Alekseev, B. Borodin, K. Orekhova, V. Kozlovsky, M. Zverev, N. Gamov, T. Wang, X. Wang, M. Pristovsek, H. Amano, S. Ivanov. Nanomaterials, 13 (6), 1077(2023). DOI: 10.3390/nano13061077
- J.W. Yang, A. Lunev, G. Simin, A. Chitnis, M. Shatalov, M. Asif Khan, J.E. Van Nostrand, R. Gaska. Appl. Phys. Lett., 76 (3), 273 (2000). DOI: 10.1063/1.125745
- B. Fan, X. Zhao, J. Zhang, Y. Sun, H. Yang, L.J. Guo, S. Zhou. Laser Photon. Rev., 17 (3), 2200455 (2023). DOI: 10.1002/lpor.202200455
- A. Osinsky, S. Gangopadhyay, J.W. Yang, R. Gaska, D. Kuksenkov, H. Temkin, I.K. Shmagin, Y.C. Chang, J.F. Muth, R.M. Kolbas. Appl. Phys. Lett., 72 (5), 551 (1998). DOI: 10.1063/1.120755
- T. Li, Y. Lu, Z. Chen. Nanomaterials, 12 (23), 4169 (2022). DOI: 10.3390/nano12234169
- K.-S. Im, S.P. Reddy Mallem, J.-S. Choi, Y.-M. Hwang, J.-S. Roh, S.-J. An, J.-H. Lee. Nanomaterials, 12 (4), 643 (2022). DOI: 10.3390/nano12040643
- T. Egawa, N. Nakada, H. Ishikawa, M. Umeno. Electron. Lett., 36 (21), 1816 (2000). DOI: 10.1049/el:20001282
- H. Lahr\`eche, P. Vennegu\`es, O. Tottereau, M. Laugt, P. Lorenzini, M. Leroux, B. Beaumont, P. Gibart. J. Cryst. Growth, 217 (1-2), 13 (2000). DOI: 10.1016/S0022-0248(00)00478-4
- H. Umeda, A. Suzuki, Y. Anda, M. Ishida, T. Ueda, T. Tanaka, D. Ueda. 2010 Int. Electron Devices Meeting, 2010, Technical Digest (San Francisco, CA, USA, 2010) p. 20-5. DOI: 10.1109/IEDM.2010.5703400
- S. Pal, C. Jacob. Bull. Mater. Sci., 27 (6), 501 (2004). DOI: 10.1007/BF02707276
- A. Le Louarn, S. V ezian, F. Semond, J. Massies. J. Cryst. Growth, 311 (12), 3278 (2009). DOI: 10.1016/j.jcrysgro.2009.04.001
- V.G. Mansurov, T.V. Malin, Y.G. Galitsyn, A.A. Shklyaev, K.S. Zhuravlev. J. Cryst. Growth, 441, 12 (2016). DOI: 10.1016/j.jcrysgro.2016.02.007
- D. Milakhin, T. Malin, V. Mansurov, Y. Maidebura, D. Bashkatov, I. Milekhin, S. Goryainov, V. Volodin, I. Loshkarev, V. Vdovin, A. Gutakovskii, S. Ponomarev, K. Zhuravlev. Surf. Interfaces, 51, 104817 (2024). DOI: 10.1016/j.surfin.2024.104817
- A. Ishizaka, Y. Shiraki. J. Electrochem. Soc., 133 (4), 666 (1986). DOI: 10.1149/1.2108651
- V. Mansurov, Y. Galitsyn, T. Malin, S. Teys, D. Milakhin, K. Zhuravlev. Appl. Surf. Sci., 571, 151276 (2022). DOI: 10.1016/j.apsusc.2021.151276
- V.G. Mansurov, Y.G. Galitsyn, T.V. Malin, S.A. Teys, K.S. Zhuravlev, I. Cora, B. Pecz. In: 2D Materials (p. 31). IntechOpen (2018). DOI: 10.5772/intechopen.81775
- V. Mansurov, T. Malin, S. Teys, V. Atuchin, D. Milakhin, K. Zhuravlev. Crystals, 12 (12), 1707 (2022). DOI: 10.3390/cryst12121707
- V. Mansurov, T. Malin, V. Golyashov, D. Milakhin, K. Zhuravlev. Appl. Surf. Sci., 640, 158313 (2023). DOI: 10.1016/j.apsusc.2023.158313
- D.D. Bashkatov, T.V. Malin, V.G. Mansurov, D.S. Milakhin, K.S. Zhuravlev. 2023 IEEE 23rd Int. Conf. of Young Professionals in Electron Devices and Materials (EDM), 2022, Technical Digest (Novosibirsk, Russian Federation, 2023) p. 200. DOI: 10.1109/EDM58354.2023.10225173
- P.D. Desai. J. Phys. Chem. Ref. Data, 15 (3), 967 (1986). DOI: 10.1063/1.555761
- A.V. Latyshev, A.L. Aseev, A.B. Krasilnikov, S.I. Stenin. Surf. Sci., 213 (1), 157 (1989). DOI: 10.1016/0039-6028(89)90256-2
- Y.F. Zhao, H.Q. Yang, J.N. Gao, Z.Q. Xue, S.J. Pang. Surf. Sci., 406 (1-3), L614 (1988). DOI: 10.1016/S0039-6028(98)00237-4
- H. Uchida, S. Watanabe, H. Kuramochi, J. Kim, K. Nishimura, M. Inoue, M. Aono. Phys. Rev. B, 66 (16), 161316 (2002). DOI: 10.1103/PhysRevB.66.161316
- T. Sato, S.I. Kitamura, M. Iwatsuki. J. Vac. Sci. Technol. A, 18 (3), 960 (2000). DOI: 10.1116/1.58228
Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.
Дата начала обработки статистических данных - 27 января 2016 г.