Photo-voltaic effect in 2DEG of lateral superlattices in uniform magnetic field at the lack of inversion symmetry
Perov A. A.1, Pikunov P. V.1
1Lobachevsky State University, Nizhny Novgorod, Russia
Email: wkb@inbox.ru

PDF
The energy spectrum of an electron in the periodic electrostatic field of a surface superlattice and in a sufficiently strong perpendicular uniform magnetic field consist of narrow minibands formed near Landau levels. The electron Hamiltonian commutes with the magnetic translation operator, and the magnetic field is assumed to be such that the elementary cell of the superlattice is permeated by a magnetic flux equal to a rational number of its quanta. According to Kramers' theorem, in an external magnetic field, the electron dispersion laws are not even functions of quasimomentum projections if the periodic potential of the superlattice field does not have an inversion center V(r)≠ V(- r). Therefore, when carriers transition under the action of an electromagnet wave of a certain polarization from occupied magnetic subband to an free one, a non-zero surface electric current occurs in the system. The paper presents model calculations of the density of such a surface current for typical and experimentally realized parameters of superlattices. Depending on the parameters determining the degree of violation of the spatial inversion symmetry of the superlattice, the vector of the surface electron current density can change direction. Keywords: Photo-voltatic effect, semiconductor superlattices.
  1. R.J. Stiles. Surf. Sci., 73, 451 (1978)
  2. D. Weiss, P. Grambow, K. von Klitzing, A. Menschig, G. Weimann. Appl. Phys. Lett., 58, 2960 (1991)
  3. M.C. Geisel, J.H. Smet, V. Umansky, K. von Klitzing, B. Naundorf, R. Ketzmerick, H. Schweizer. Phys. Rev. Lett., 92, 256801 (2004)
  4. F.G. Picus. ZhTP, 22(5), 940 (1988). (in Russian)
  5. L.I. Magarill. Physica E, 9 (4), 652 (2001)
  6. H. Diehl, V.A. Shalygin, S.N. Danilov, S.A. Tarasenko, V.V. Bel'kov, D. Schuh, W. Wegscheider, W. Prettl, S.D. Ganichev. J. Phys.: Condens. Matter, 19, 436232 (2007)
  7. Yu.Yu. Kiselev, L.E. Golub. Phys. Rev. B, 84, 235440 (2011)
  8. I. Yahniuk, M. Hild, L.E. Golub, J. Amann, J. Eroms, D. Weiss, W.-H. Kang, M.-H. Liu, K. Watanabe, T. Taniguchi, S.D. Ganichev. Phys. Rev. B, 109, 235428 (2024)
  9. M. Hild, I. Yahniuk, L.E. Golub, J. Amann, J. Eroms, D. Weiss, K. Watanabe, T. Taniguchi, S.D. Ganichev. Phys. Rev. Research, 6, 023308 (2024)
  10. V. Karpus. ZhTP, 22, 439 (1988). (in Russian)
  11. E.M. Lifshitz, L.P. Pitaevskiy. Teoreticheskaya fizika. V. 9 (M., Nauka, 1978).

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru