Influence of the ratio of group III and V fluxes on the structural, emissive properties properties and stimulated emission of planar structures with InGaN layers in the IR range
Lobanov D. N. 1, Kalinnikov M. A.1, Kudryavtsev K. E.1, Andreev B. A.1, Yunin P. A. 1, Novikov A. V.1, Skorokhodov E. V.1, Krasilnik Z. F.1,2
1Institute for Physics of Microstructures, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
Email: dima@ipmras.ru

PDF
The influence of the ratio of fluxes of elements of groups III and V on the formation features, structural, emissive properties, as well as the possibility of obtaining stimulated emission in the IR range in planar structures with InGaN layers with an In content of ~ 50-100% has been studied. It was found that at a growth temperature of 470oC, in order to obtain InGaN layers of homogeneous composition, the III/V flow ratio must be reduced compared to the stoichiometric (III/V <1) in order to suppress the processes of thermal decomposition and phase separation. The critical III/V value required to obtain homogeneous InGaN solutions depends non-monotonically on the composition. As the In content decreases to ~ 80%, this ratio increases from 0.75 to 0.85, which is due to the stabilization of the InGaN solution, since the Ga-N atom bonds are stronger than the In-N bonds. With a further decrease in the In content to ~50%, the III/V ratio must be reduced to suppress the processes of thermal decomposition and phase separation. The optimal III/V ratio, from the point of view of the lowest stimulated emission thresholds, is close to the critical III/V ratio for obtaining homogeneous InGaN of a given composition. At III/V values greater than critical, processes of thermal decomposition and phase separation are observed in InGaN solutions, and stimulated emission is not observed in such structures. If the III/V ratio decreases significantly below the critical value, as a result of the development of surface roughness and an increase in optical losses, the stimulated emission thresholds significantly increase. Keywords: InGaN, molecular beam epitaxy, thermal decomposition, spinodal decomposition, stimulated emission of radiation.
  1. R. Kour, S. Arya, S. Verma, A. Singh, P. Mahajan, A. Khosla. ECS J. Solid State Sci. Technol., 9, 015011 (2020). DOI: 10.1149/2.0292001JSS
  2. Z.C. Feng. Handbook of Solid-State Lighting and LEDs (Boca Raton, FL, CRC Press, Taylor \& Francis Group, 2017) p. 3. DOI: 10.1201/9781315151595
  3. F. Roccaforte, M. Leszczynski. Nitride Semiconductor Technology Power Electronics and Optoelectronic Devices (Wiley-VCH Verlag GmbH \& Co. KGaA, 2020) p. 254
  4. B. Damilano, B. Gil. J. Phys. D: Appl. Phys., 48 (40), 403001, (2015). DOI: 10.1088/0022-3727/48/40/403001
  5. C. Adelmann, R. Langer, G. Feuillet, B. Daudin. Appl. Phys. Lett., 75, 3518 (1999). DOI: /10.1063/1.125374
  6. G.B. Stringfellow. J. Cryst. Growth, 312, 735 (2010). DOI: 10.1016/j.jcrysgro.2009.12.018
  7. H. Chen, R.M. Feenstra, J.E. Northrup, T. Zywietz, J. Neugebauer, D.W. Greve, J. Vac. Sci. Technol. B, 18, 2284 (2000). DOI: 10.1116/1.1306296
  8. D.N. Lobanov, K.E. Kudryavtsev, M.I. Kalinnikov, L.V. Krasilnikova, P.A. Yunin, E.V. Skorokhodov, M.V. Shaleev, A.V. Novikov, B.A. Andreev, Z.F. Krasilnik. Appl. Phys. Lett., 118, 151902 (2021). DOI: 10.1063/5.0047674
  9. B.A. Andreev, D.N. Lobanov, L.V. Krasil'nikova, K.E. Kudryavtsev, A.V. Novikov, P.A. Yunin, M.A. Kalinnikov, E.V. Skorokhodov, Z.F. Krasil'nik. FTP, 56 (7), 700 (2022). (in Russian). DOI: 10.21883/FTP.2022.07.52763.18
  10. M.A. Kalinnikov, D.N. Lobanov, K.E. Kudryavtsev, B.A. Andreev, P.A. Yunin, L.V. Krasilnikova, A.V. Novikov, E.V. Skorokhodov, Z.F. Krasil'nik. FTP, 57 (6), 444 (2023). (in Russian). DOI: 10.21883/FTP.2023.06.56472.38k
  11. B.A. Andreev, D.N. Lobanov, L.V. Krasil'nikova, K.E. Kudryavtsev, A.V. Novikov, P.A. Yunin, M.A. Kalinnikov, E.V. Skorokhodov, M.V. Shaleev, Z.F. Krasil'nik. FTP, 55 (9), 766 (2021). (in Russian). DOI: 10.21883/FTP.2021.09.51292.22
  12. M.A. Moram, M.E. Vickers. Rep. Progr. Phys., 72, 036502 (2009). DOI: 10.1088/0034-4885/72/3/036502
  13. E.J. Tarsa, B. Heying, X.H. Wu, P. Fini, S.P. den Baars, J.S. Speck. J. Appl. Phys., 82, 5472 (1997). DOI: 10.1063/1.365575
  14. E. Dimakis, E. Iliopoulos, K. Tsagaraki, A. Georgakilas. Appl. Phys. Lett., 86, 133104 (2005). DOI: 10.1063/1.1891292
  15. H. Komaki, T. Nakamura, R. Katayama, K. Onabe, M. Ozeki, T. Ikari. J. Cryst. Growth, 301, 473 (2007). DOI: 10.1016/j.jcrysgro.2006.11.123
  16. B.A. Andreev, D.N. Lobanov, L.V. Krasil'nikova, P.A. Bushuykin, A.N. Yablonskiy, A.V. Novikov, V.Yu. Davydov, P.A. Yunin, M.I. Kalinnikov, E.V. Skorohodov, Z.F. Krasil'nik. FTP, 53 (10), 1395 (2019). (in Russian). DOI: 0.21883/FTP.2019.10.48296.42
  17. K.E. Kudryavtsev, D.N. Lobanov, L.V. Krasilnikova, A.N. Yablonskiy, P.A. Yunin, E.V. Skorokhodov, M.A. Kalinnikov, A.V. Novikov, B.A. Andreev, Z.F. Krasilnik. ECS J. Solid State Sci. Technol., 11, 014003 (2022). DOI: 10.1149/2162-8777/ac4d80

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru