Mechanisms of discrete- and continuous-spectrum generation and weakly and strongly asymmetric modes in a superradiant laser with a low-Q combined cavity
Kocharovskaya E.R. 1, Kocharovsky Vl.V 1,2
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
Email: katya@appl.sci-nnov.ru, kochar@appl.sci-nnov.ru

PDF
Using the Maxwell-Bloch equations in the case of homogeneous broadening of spectral line of a two-level active medium placed in a low-Q combined Fabry-Perot cavity with identical mirrors and distributed feedback of counterpropagating waves, numerical simulations of a non-stationary (single- and multi-mode) asymmetric superradiant lasing are carried out. It is established that, in the general case, laser radiation is not mirror-symmetric and its spectrum contains discrete and continuous components. The main mechanisms of their origin are clarified and, using a number of examples, the possibility of simultaneous generation of one powerful, strongly asymmetric, polariton mode in the center of the spectral line and several weaker, almost symmetrically emitting, polariton modes (harmonics) outside it is demonstrated. Keywords: superradiant laser, population-inversion grating, polariton modes, self-modulation, discrete spectrum, continuous spectrum, low-Q combined cavity, distributed feedback.
  1. Ya.I. Khanin, Prinsiples of Laser Dynamics (North Holland, 2012)
  2. T. Erneux, P. Glorieux. Laser Dynamics (Cambridge University Press, 2010)
  3. P. Peterka, P. Kov ska, J. v Ctyroky. IEEE J. Select. Top. Quant. Electron., 24, 902608 (2018)
  4. L. Lugiato, F. Prati, M. Brambilla. Nonlinear Optical Systems (Cambridge: Cambridge University Press, 2015)
  5. A.M. Samson, L.A. Kotomtseva, N.A. Loiko. Avtokolebaniya v lazerakh (Minsk, Navuka I tekhnika, 1990). (in Russian)
  6. Vl.V. Kocharovsky, V.V. Zheleznyakov, E.R. Kocharovskaya, V.V. Kocharovsky, Phys. Usp, 60, 345 (2017)
  7. E.R. Kocharovskaya, A.V. Mishin, Vl.V. Kocharovsky, V.V. Kocharovsky. Semicond., 56, 333 (2022)
  8. K. Cong, Q. Zhang, Y. Wang, G.T. Noe II, A. Belyanin, J. Kono. JOSA B, 33, 80 (2016)
  9. T.S. Mansuripur, C. Vernet, P. Chevalier, G. Aoust, B. Schwarz, F. Xie, C. Caneau, K. Lascola, Chung-en Zah, D.P. Caffey, T. Day, L.J. Missaggia, M.K. Connors, C.A. Wang, A. Belyanin, F. Capasso. Phys. Rev. A, 94, 063807 (2016)
  10. W. Zhang, E.R. Brown, A. Mingardi, R.P. Mirin, N. J ahed, D. Saeedkia. Appl. Sci., 9, 3014 (2019)
  11. E.Y. Paik, L. Zhang, G.W. Burg, R. Gogna, E. Tutuc, H. Deng. Nature, 576, 80 (2019)
  12. Zhang Wu, Yu Chen, Hui Zhai. Sci. Bulletin, 63, 542 (2018)
  13. Q. Wu, Y. Zhang, X. Yang, S.-L. Su, Ch. Shan, Klaus Mulmer. Sci. China Phys. Mech. Astron., 65, 217311 (2022)
  14. D. Botez, M.A. Belkin. Eds., Mid-Infrared and Terahertz Quantum Cascade Lasers (Cambridge University Press, 2023)
  15. L. Allen, J.H. Eberly. Optical Resonance and Two-Level Atoms, Dover Publications Inc., N.Y. (1975)
  16. E.R. Kocharovskaya, Vl.V. Kocharovsky, V.V. Kocharovsky. Radiophys \& Q.Electron., 66, 167 (2023)
  17. E.R. Kocharovskaya, V.V. Kocharovsky. Semicond., 57, 337 (2023)
  18. V.V. Zheleznyakov, Vl.V. Kocharovskii, V.V. Kocharovskii. Sov. Phys. Usp, 159, 835 (1989)

Подсчитывается количество просмотров абстрактов ("html" на диаграммах) и полных версий статей ("pdf"). Просмотры с одинаковых IP-адресов засчитываются, если происходят с интервалом не менее 2-х часов.

Дата начала обработки статистических данных - 27 января 2016 г.

Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru