Mechanisms of discrete- and continuous-spectrum generation and weakly and strongly asymmetric modes in a superradiant laser with a low-Q combined cavity
Kocharovskaya E.R. 1, Kocharovsky Vl.V 1,2
1Institute of Applied Physics, Russian Academy of Sciences, Nizhny Novgorod, Russia
2Lobachevsky State University, Nizhny Novgorod, Russia
Email: katya@appl.sci-nnov.ru, kochar@appl.sci-nnov.ru

PDF
Using the Maxwell-Bloch equations in the case of homogeneous broadening of spectral line of a two-level active medium placed in a low-Q combined Fabry-Perot cavity with identical mirrors and distributed feedback of counterpropagating waves, numerical simulations of a non-stationary (single- and multi-mode) asymmetric superradiant lasing are carried out. It is established that, in the general case, laser radiation is not mirror-symmetric and its spectrum contains discrete and continuous components. The main mechanisms of their origin are clarified and, using a number of examples, the possibility of simultaneous generation of one powerful, strongly asymmetric, polariton mode in the center of the spectral line and several weaker, almost symmetrically emitting, polariton modes (harmonics) outside it is demonstrated. Keywords: superradiant laser, population-inversion grating, polariton modes, self-modulation, discrete spectrum, continuous spectrum, low-Q combined cavity, distributed feedback.
Publisher:

Ioffe Institute

Institute Officers:

Director: Sergei V. Ivanov

Contact us:

26 Polytekhnicheskaya, Saint Petersburg 194021, Russian Federation
Fax: +7 (812) 297 1017
Phone: +7 (812) 297 2245
E-mail: post@mail.ioffe.ru